ﻻ يوجد ملخص باللغة العربية
We propose a new broadband search strategy for ultralight axion dark matter that interacts with electromagnetism. An oscillating axion field induces transitions between two quasi-degenerate resonant modes of a superconducting cavity. In two broadband runs optimized for high and low masses, this setup can probe unexplored parameter space for axion-like particles covering fifteen orders of magnitude in mass, including astrophysically long-ranged fuzzy dark matter.
Electromagnetic radiation with angular frequency equal to half the axion mass stimulates the decay of cold dark matter axions and produces an echo, i.e. faint electromagnetic radiation traveling in the opposite direction. We propose to search for axi
It was recently shown that a powerful beam of radio/microwave radiation sent out to space can produce detectable back-scattering via the stimulated decay of ambient axion dark matter. This echo is a faint and narrow signal centered at an angular freq
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requirin
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density.