ترغب بنشر مسار تعليمي؟ اضغط هنا

SuperCDMS SNOLAB Low-Mass Detectors: Ultra-Sensitive Phonon Calorimeters for a Sub-GeV Dark Matter Search

177   0   0.0 ( 0 )
 نشر من قبل Noah Kurinsky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the technical design for the SuperCDMS high-voltage, low-mass dark matter detectors, designed to be sensitive to dark matter down to 300 MeV/$c^2$ in mass and resolve individual electron-hole pairs from low-energy scattering events in high-purity Ge and Si crystals. In this paper we discuss some of the studies and technological improvements which have allowed us to design such a sensitive detector, including advances in phonon sensor design and detector simulation. With this design we expect to achieve better than 10 eV (5 eV) phonon energy resolution in our Ge (Si) detectors, and recoil energy resolution below 1eV by exploiting Luke-Neganov phonon generation of charges accelerated in high fields.



قيم البحث

اقرأ أيضاً

A potential background for the SuperCDMS SNOLAB dark matter experiment is from radon daughters that have plated out onto detector surfaces. To reach desired backgrounds, understanding plate-out rates during detector fabrication as well as mitigating radon in surrounding air is critical. A radon mitigated cleanroom planned at SNOLAB builds upon a system commissioned at the South Dakota School of Mines & Technology (SD Mines). The ultra-low radon cleanroom at SD Mines has air supplied by a vacuum-swing-adsorption radon mitigation system that has achieved $>$1000$times$ reduction for a cleanroom activity consistent with zero and $<0.067,$Bq$,$m$^{-3}$ at 90% confidence. Our simulation of this system, validated against calibration data, provides opportunity for increased understanding and optimization for this and future systems.
The composition of dark matter is one of the puzzling topics in astrophysics. To address this issue, several experiments searching for the existence of axions have been designed, built and realized in the last twenty years. Among all the others, ligh t shining through walls experiments promise to push the exclusion limits to lower energies. For this reason, effort is put for the development of single-photon detectors operating at frequencies $<100$ GHz. Here, we review recent advancements in superconducting single-photon detection. In particular, we present two sensors based on one-dimensional Josephson junctions with the capability to be in situ tuned by simple current bias: the nanoscale transition edge sensor (nano-TES) and the Josephson escape sensor (JES). These two sensors are the ideal candidates for the realization of microwave light shining through walls (LSW) experiments, since they show unprecedented frequency resolutions of about 100 GHz and 2 GHz for the nano-TES and JES, respectively.
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and sili con). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the neutrino floor, where coherent scatters of solar neutrinos become a limiting background.
64 - H. Bonet 2020
Intense fluxes of reactor antineutrinos offer a unique possibility to probe the fully coherent character of elastic neutrino scattering off atomic nuclei. In this regard, detectors face the challenge to register tiny recoil energies of a few keV at t he maximum. The CONUS experiment was installed in 17.1 m distance from the reactor core of the nuclear power plant in Brokdorf, Germany, and was designed to detect this neutrino interaction channel by using four 1 kg-sized point contact germanium detectors with sub-keV energy thresholds. This report describes the unique specifications addressed to the design, the research and development, and the final production of these detectors. It demonstrates their excellent electronic performance obtained during commissioning under laboratory conditions as well as during the first two years of operation at the reactor site which started on April 1, 2018. It highlights the long-term stability of different detector parameters and the achieved background levels of the germanium detectors inside the CONUS shield setup.
We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar semiconductor which allows sensitivity to a broader range o f dark matter candidates; and (ii) it exists in many stable polymorphs with varying physical properties, and hence has tunable sensitivity to various dark matter models. We show that SiC is an excellent target to search for electron, nuclear and phonon excitations from scattering of dark matter down to 10 keV in mass, as well as for absorption processes of dark matter down to 10 meV in mass. Combined with its widespread use as an alternative to silicon in other detector technologies and its availability compared to diamond, our results demonstrate that SiC holds much promise as a novel dark matter detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا