ﻻ يوجد ملخص باللغة العربية
We demonstrate detection of a weak alternate-current magnetic field by application of the spin echo technique to F = 2 Bose-Einstein condensates. A magnetic field sensitivity of 12 pT/Hz^1/2 is attained with the atom number of 5*10^3 at spatial resolution of 99 mu m^2. Our observations indicate magnetic field fluctuations synchronous with the power supply line frequency. We show that this noise is greatly suppressed by application of a reverse phase magnetic field. Our technique is useful in order to create a stable magnetic field environment, which is an important requirement for atomic experiments which require a weak bias magnetic field.
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended
We analytically and numerically investigate the ground state of the spin-orbit coupled spin-1 Bose-Einstein condensates in an external parabolic potential. When the spin-orbit coupling strength $kappa$ is comparable with that of the trapping potentia
We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials h
Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, i