ﻻ يوجد ملخص باللغة العربية
We consider the problem of designing an adaptive sequence of questions that optimally classify a candidates ability into one of several categories or discriminative grades. A candidates ability is modeled as an unknown parameter, which, together with the difficulty of the question asked, determines the likelihood with which s/he is able to answer a question correctly. The learning algorithm is only able to observe these noisy responses to its queries. We consider this problem from a fixed confidence-based $delta$-correct framework, that in our setting seeks to arrive at the correct ability discrimination at the fastest possible rate while guaranteeing that the probability of error is less than a pre-specified and small $delta$. In this setting we develop lower bounds on any sequential questioning strategy and develop geometrical insights into the problem structure both from primal and dual formulation. In addition, we arrive at algorithms that essentially match these lower bounds. Our key conclusions are that, asymptotically, any candidate needs to be asked questions at most at two (candidate ability-specific) levels, although, in a reasonably general framework, questions need to be asked only at a single level. Further, and interestingly, the problem structure facilitates endogenous exploration, so there is no need for a separately designed exploration stage in the algorithm.
Metrics specifying distances between data points can be learned in a discriminative manner or from generative models. In this paper, we show how to unify generative and discriminative learning of metrics via a kernel learning framework. Specifically,
Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task
We propose discriminative adversarial networks (DAN) for semi-supervised learning and loss function learning. Our DAN approach builds upon generative adversarial networks (GANs) and conditional GANs but includes the key differentiator of using two di
We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to
Deep reinforcement learning is successful in decision making for sophisticated games, such as Atari, Go, etc. However, real-world decision making often requires reasoning with partial information extracted from complex visual observations. This paper