ترغب بنشر مسار تعليمي؟ اضغط هنا

Geomstats: A Python Package for Riemannian Geometry in Machine Learning

92   0   0.0 ( 0 )
 نشر من قبل Nina Miolane
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends, namely NumPy, PyTorch and TensorFlow, enabling GPU acceleration. This paper presents the package, compares it with related libraries and provides relevant code examples. We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics, and to democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at url{geomstats.ai}.

قيم البحث

اقرأ أيضاً

CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between th eoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.
We introduce hyppo, a unified library for performing multivariate hypothesis testing, including independence, two-sample, and k-sample testing. While many multivariate independence tests have R packages available, the interfaces are inconsistent and most are not available in Python. hyppo includes many state of the art multivariate testing procedures. The package is easy-to-use and is flexible enough to enable future extensions. The documentation and all releases are available at https://hyppo.neurodata.io.
150 - Neha R. Gupta 2021
dame-flame is a Python package for performing matching for observational causal inference on datasets containing discrete covariates. This package implements the Dynamic Almost Matching Exactly (DAME) and Fast Large-Scale Almost Matching Exactly (FLA ME) algorithms, which match treatment and control units on subsets of the covariates. The resulting matched groups are interpretable, because the matches are made on covariates (rather than, for instance, propensity scores), and high-quality, because machine learning is used to determine which covariates are important to match on. DAME solves an optimization problem that matches units on as many covariates as possible, prioritizing matches on important covariates. FLAME approximates the solution found by DAME via a much faster backward feature selection procedure. The package provides several adjustable parameters to adapt the algorithms to specific applications, and can calculate treatment effects after matching. Descriptions of these parameters, details on estimating treatment effects, and further examples, can be found in the documentation at https://almost-matching-exactly.github.io/DAME-FLAME-Python-Package/
Scientific Computing relies on executing computer algorithms coded in some programming languages. Given a particular available hardware, algorithms speed is a crucial factor. There are many scientific computing environments used to code such algorith ms. Matlab is one of the most tremendously successful and widespread scientific computing environments that is rich of toolboxes, libraries, and data visualization tools. OpenCV is a (C++)-based library written primarily for Computer Vision and its related areas. This paper presents a comparative study using 20 different real datasets to compare the speed of Matlab and OpenCV for some Machine Learning algorithms. Although Matlab is more convenient in developing and data presentation, OpenCV is much faster in execution, where the speed ratio reaches more than 80 in some cases. The best of two worlds can be achieved by exploring using Matlab or similar environments to select the most successful algorithm; then, implementing the selected algorithm using OpenCV or similar environments to gain a speed factor.
Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices fo r the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا