ﻻ يوجد ملخص باللغة العربية
We introduce hyppo, a unified library for performing multivariate hypothesis testing, including independence, two-sample, and k-sample testing. While many multivariate independence tests have R packages available, the interfaces are inconsistent and most are not available in Python. hyppo includes many state of the art multivariate testing procedures. The package is easy-to-use and is flexible enough to enable future extensions. The documentation and all releases are available at https://hyppo.neurodata.io.
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-o
Dealing with biased data samples is a common task across many statistical fields. In survey sampling, bias often occurs due to unrepresentative samples. In causal studies with observational data, the treated versus untreated group assignment is often
The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function pe
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the rando
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applicati