ترغب بنشر مسار تعليمي؟ اضغط هنا

CausalML: Python Package for Causal Machine Learning

74   0   0.0 ( 0 )
 نشر من قبل Zhenyu Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between theoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.



قيم البحث

اقرأ أيضاً

We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-o riented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends, namely NumPy, PyTorch and TensorFlow, enabling GPU acceleration. This paper presents the package, compares it with related libraries and provides relevant code examples. We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics, and to democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at url{geomstats.ai}.
Seglearn is an open-source python package for machine learning time series or sequences using a sliding window segmentation approach. The implementation provides a flexible pipeline for tackling classification, regression, and forecasting problems wi th multivariate sequence and contextual data. This package is compatible with scikit-learn and is listed under scikit-learn Related Projects. The package depends on numpy, scipy, and scikit-learn. Seglearn is distributed under the BSD 3-Clause License. Documentation includes a detailed API description, user guide, and examples. Unit tests provide a high degree of code coverage.
324 - Daniel B. Neill 2017
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for bo th the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.
TensorFlow Eager is a multi-stage, Python-embedded domain-specific language for hardware-accelerated machine learning, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends, requires users to represent comp utations as dataflow graphs; this permits compiler optimizations and simplifies deployment but hinders rapid prototyping and run-time dynamism. TensorFlow Eager eliminates these usability costs without sacrificing the benefits furnished by graphs: It provides an imperative front-end to TensorFlow that executes operations immediately and a JIT tracer that translates Python functions composed of TensorFlow operations into executable dataflow graphs. TensorFlow Eager thus offers a multi-stage programming model that makes it easy to interpolate between imperative and staged execution in a single package.
86 - Xiaohan Yang , Qingyin Ge 2019
Our project aims at helping independent musicians to plan their concerts based on the economies of agglomeration in the music industry. Initially, we planned to design an advisory tool for both concert pricing and location selection. Nonetheless, aft er implementing SGD linear regression and support vector regression models, we realized that concert price does not vary significantly according to different music types, concert time, concert location and ticket venues. Therefore, to offer more useful suggestions, we focus on the location choice problem by turning it to a classification task. The overall performance of our classification model is pretty good. After tuning hyperparameters, we discovered the Random Forest gives the best performance, improving the classification result by 316%. This result reveals that we could help independent musicians better locate their concerts to where similar musicians would go, namely a place with higher network effects.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا