ترغب بنشر مسار تعليمي؟ اضغط هنا

Pruning and Sparsemax Methods for Hierarchical Attention Networks

115   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Ribeiro
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces and evaluates two novel Hierarchical Attention Network models [Yang et al., 2016] - i) Hierarchical Pruned Attention Networks, which remove the irrelevant words and sentences from the classification process in order to reduce potential noise in the document classification accuracy and ii) Hierarchical Sparsemax Attention Networks, which replace the Softmax function used in the attention mechanism with the Sparsemax [Martins and Astudillo, 2016], capable of better handling importance distributions where a lot of words or sentences have very low probabilities. Our empirical evaluation on the IMDB Review for sentiment analysis datasets shows both approaches to be able to match the results obtained by the current state-of-the-art (without, however, any significant benefits). All our source code is made available athttps://github.com/jmribeiro/dsl-project.



قيم البحث

اقرأ أيضاً

Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simp le text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.
Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accurac y of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlation among medical codes which can potentially be exploited to improve the performance. We propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS COVID-19 shielding codes. Experiments were conducted to compare HLAN and LE initialisation to the state-of-the-art neural network based methods. HLAN achieved the best Micro-level AUC and $F_1$ on the top-50 code prediction and comparable results on the NHS COVID-19 shielding code prediction to other models. By highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to its downgraded baselines and the CNN-based models. LE initialisation consistently boosted most deep learning models for automated medical coding.
Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as $mathsf{Dyck}_k$, the language consisting of well-nested parentheses of $k$ t ypes. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process $mathsf{Dyck}_{k, D}$, the subset of $mathsf{Dyck}_{k}$ with depth bounded by $D$, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with $D+1$ layers and $O(log k)$ memory size (per token per layer) that recognizes $mathsf{Dyck}_{k, D}$, and a soft-attention network with two layers and $O(log k)$ memory size that generates $mathsf{Dyck}_{k, D}$. Experiments show that self-attention networks trained on $mathsf{Dyck}_{k, D}$ generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.
In this work, we propose three explainable deep learning architectures to automatically detect patients with Alzheimer`s disease based on their language abilities. The architectures use: (1) only the part-of-speech features; (2) only language embeddi ng features and (3) both of these feature classes via a unified architecture. We use self-attention mechanisms and interpretable 1-dimensional ConvolutionalNeural Network (CNN) to generate two types of explanations of the model`s action: intra-class explanation and inter-class explanation. The inter-class explanation captures the relative importance of each of the different features in that class, while the inter-class explanation captures the relative importance between the classes. Note that although we have considered two classes of features in this paper, the architecture is easily expandable to more classes because of its modularity. Extensive experimentation and comparison with several recent models show that our method outperforms these methods with an accuracy of 92.2% and F1 score of 0.952on the DementiaBank dataset while being able to generate explanations. We show by examples, how to generate these explanations using attention values.
In this paper, a hierarchical attention network to generate utterance-level embeddings (H-vectors) for speaker identification is proposed. Since different parts of an utterance may have different contributions to speaker identities, the use of hierar chical structure aims to learn speaker related information locally and globally. In the proposed approach, frame-level encoder and attention are applied on segments of an input utterance and generate individual segment vectors. Then, segment level attention is applied on the segment vectors to construct an utterance representation. To evaluate the effectiveness of the proposed approach, NIST SRE 2008 Part1 dataset is used for training, and two datasets, Switchboard Cellular part1 and CallHome American English Speech, are used to evaluate the quality of extracted utterance embeddings on speaker identification and verification tasks. In comparison with two baselines, X-vector, X-vector+Attention, the obtained results show that H-vectors can achieve a significantly better performance. Furthermore, the extracted utterance-level embeddings are more discriminative than the two baselines when mapped into a 2D space using t-SNE.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا