ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainable Automated Coding of Clinical Notes using Hierarchical Label-wise Attention Networks and Label Embedding Initialisation

131   0   0.0 ( 0 )
 نشر من قبل Hang Dong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlation among medical codes which can potentially be exploited to improve the performance. We propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS COVID-19 shielding codes. Experiments were conducted to compare HLAN and LE initialisation to the state-of-the-art neural network based methods. HLAN achieved the best Micro-level AUC and $F_1$ on the top-50 code prediction and comparable results on the NHS COVID-19 shielding code prediction to other models. By highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to its downgraded baselines and the CNN-based models. LE initialisation consistently boosted most deep learning models for automated medical coding.

قيم البحث

اقرأ أيضاً

115 - Yifan Wu , Min Zeng , Ying Yu 2021
Automatic International Classification of Diseases (ICD) coding is defined as a kind of text multi-label classification problem, which is difficult because the number of labels is very large and the distribution of labels is unbalanced. The label-wis e attention mechanism is widely used in automatic ICD coding because it can assign weights to every word in full Electronic Medical Records (EMR) for different ICD codes. However, the label-wise attention mechanism is computational redundant and costly. In this paper, we propose a pseudo label-wise attention mechanism to tackle the problem. Instead of computing different attention modes for different ICD codes, the pseudo label-wise attention mechanism automatically merges similar ICD codes and computes only one attention mode for the similar ICD codes, which greatly compresses the number of attention modes and improves the predicted accuracy. In addition, we apply a more convenient and effective way to obtain the ICD vectors, and thus our model can predict new ICD codes by calculating the similarities between EMR vectors and ICD vectors. Extensive experiments show the superior performance of our model. On the public MIMIC-III dataset and private Xiangya dataset, our model achieves micro f1 of 0.583 and 0.806, respectively, which outperforms other competing models. Furthermore, we verify the ability of our model in predicting new ICD codes. The case study shows how pseudo label-wise attention works, and demonstrates the effectiveness of pseudo label-wise attention mechanism.
While few-shot classification has been widely explored with similarity based methods, few-shot sequence labeling poses a unique challenge as it also calls for modeling the label dependencies. To consider both the item similarity and label dependency, we propose to leverage the conditional random fields (CRFs) in few-shot sequence labeling. It calculates emission score with similarity based methods and obtains transition score with a specially designed transfer mechanism. When applying CRF in the few-shot scenarios, the discrepancy of label sets among different domains makes it hard to use the label dependency learned in prior domains. To tackle this, we introduce the dependency transfer mechanism that transfers abstract label transition patterns. In addition, the similarity methods rely on the high quality sample representation, which is challenging for sequence labeling, because sense of a word is different when measuring its similarity to words in different sentences. To remedy this, we take advantage of recent contextual embedding technique, and further propose a pair-wise embedder. It provides additional certainty for word sense by embedding query and support sentence pairwisely. Experimental results on slot tagging and named entity recognition show that our model significantly outperforms the strongest few-shot learning baseline by 11.76 (21.2%) and 12.18 (97.7%) F1 scores respectively in the one-shot setting.
Hierarchical multi-label text classification (HMTC) has been gaining popularity in recent years thanks to its applicability to a plethora of real-world applications. The existing HMTC algorithms largely focus on the design of classifiers, such as the local, global, or a combination of them. However, very few studies have focused on hierarchical feature extraction and explore the association between the hierarchical labels and the text. In this paper, we propose a Label-based Attention for Hierarchical Mutlti-label Text Classification Neural Network (LA-HCN), where the novel label-based attention module is designed to hierarchically extract important information from the text based on the labels from different hierarchy levels. Besides, hierarchical information is shared across levels while preserving the hierarchical label-based information. Separate local and global document embeddings are obtained and used to facilitate the respective local and global classifications. In our experiments, LA-HCN outperforms other state-of-the-art neural network-based HMTC algorithms on four public HMTC datasets. The ablation study also demonstrates the effectiveness of the proposed label-based attention module as well as the novel local and global embeddings and classifications. By visualizing the learned attention (words), we find that LA-HCN is able to extract meaningful information corresponding to the different labels which provides explainability that may be helpful for the human analyst.
152 - Bruce Nguyen , Shaoxiong Ji 2021
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re current neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
157 - Xiang Ren , Wenqi He , Meng Qu 2016
Current systems of fine-grained entity typing use distant supervision in conjunction with existing knowledge bases to assign categories (type labels) to entity mentions. However, the type labels so obtained from knowledge bases are often noisy (i.e., incorrect for the entity mentions local context). We define a new task, Label Noise Reduction in Entity Typing (LNR), to be the automatic identification of correct type labels (type-paths) for training examples, given the set of candidate type labels obtained by distant supervision with a given type hierarchy. The unknown type labels for individual entity mentions and the semantic similarity between entity types pose unique challenges for solving the LNR task. We propose a general framework, called PLE, to jointly embed entity mentions, text features and entity types into the same low-dimensional space where, in that space, objects whose types are semantically close have similar representations. Then we estimate the type-path for each training example in a top-down manner using the learned embeddings. We formulate a global objective for learning the embeddings from text corpora and knowledge bases, which adopts a novel margin-based loss that is robust to noisy labels and faithfully models type correlation derived from knowledge bases. Our experiments on three public typing datasets demonstrate the effectiveness and robustness of PLE, with an average of 25% improvement in accuracy compared to next best method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا