ﻻ يوجد ملخص باللغة العربية
Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as $mathsf{Dyck}_k$, the language consisting of well-nested parentheses of $k$ types. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process $mathsf{Dyck}_{k, D}$, the subset of $mathsf{Dyck}_{k}$ with depth bounded by $D$, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with $D+1$ layers and $O(log k)$ memory size (per token per layer) that recognizes $mathsf{Dyck}_{k, D}$, and a soft-attention network with two layers and $O(log k)$ memory size that generates $mathsf{Dyck}_{k, D}$. Experiments show that self-attention networks trained on $mathsf{Dyck}_{k, D}$ generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.
Recurrent neural networks empirically generate natural language with high syntactic fidelity. However, their success is not well-understood theoretically. We provide theoretical insight into this success, proving in a finite-precision setting that RN
Semantically controlled neural response generation on limited-domain has achieved great performance. However, moving towards multi-domain large-scale scenarios are shown to be difficult because the possible combinations of semantic inputs grow expone
Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simp
This paper introduces and evaluates two novel Hierarchical Attention Network models [Yang et al., 2016] - i) Hierarchical Pruned Attention Networks, which remove the irrelevant words and sentences from the classification process in order to reduce po
While recurrent models have been effective in NLP tasks, their performance on context-free languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture important phenomena such as hierarchical structure in natural languag