ﻻ يوجد ملخص باللغة العربية
We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $mathbb{P}[X geq t] sim a exp(-lambda t^r)$ for some constants $a, lambda > 0$ where $r in (0,1)$. We give a detailed description of the asymptotic behaviour of the position of the rightmost particle, proving almost-sure limit theorems, convergence in law and some integral tests. The limit theorems reveal interesting differences betweens the two regimes $ r in (0, 2/3)$ and $ r in (2/3, 1)$, with yet different limits in the boundary case $r = 2/3$.
We prove large deviation results for the position of the rightmost particle, denoted by $M_n$, in a one-dimensional branching random walk in a case when Cramers condition is not satisfied. More precisely we consider step size distributions with stret
In this paper we consider a d-dimensional scenery seen along a simple symmetric branching random walk, where at each time each particle gives the color record it is seeing. We show that we can a.s. reconstruct the scenery up to equivalence from the c
We work under the A{i}d{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate nonnegative random variable that we denote by $Z$. It is shown t
We derive a lower bound for the probability that a random walk with i.i.d. increments and small negative drift $mu$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probabili
The stochastic solutions to the Wigner equation, which explain the nonlocal oscillatory integral operator $Theta_V$ with an anti-symmetric kernel as {the generator of two branches of jump processes}, are analyzed. All existing branching random walk s