ﻻ يوجد ملخص باللغة العربية
The stochastic solutions to the Wigner equation, which explain the nonlocal oscillatory integral operator $Theta_V$ with an anti-symmetric kernel as {the generator of two branches of jump processes}, are analyzed. All existing branching random walk solutions are formulated based on the Hahn-Jordan decomposition $Theta_V=Theta^+_V-Theta^-_V$, i.e., treating $Theta_V$ as the difference of two positive operators $Theta^pm_V$, each of which characterizes the transition of states for one branch of particles. Despite the fact that the first moments of such models solve the Wigner equation, we prove that the bounds of corresponding variances grow exponentially in time with the rate depending on the upper bound of $Theta^pm_V$, instead of $Theta_V$. In other words, the decay of high-frequency components is totally ignored, resulting in a severe {numerical sign problem}. {To fully utilize such decay property}, we have recourse to the stationary phase approximation for $Theta_V$, which captures essential contributions from the stationary phase points as well as the near-cancelation of positive and negative weights. The resulting branching random walk solutions are then proved to asymptotically solve the Wigner equation, but {gain} a substantial reduction in variances, thereby ameliorating the sign problem. Numerical experiments in 4-D phase space validate our theoretical findings.
We work under the A{i}d{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate nonnegative random variable that we denote by $Z$. It is shown t
Using a high performance computer cluster, we run simulations regarding an open problem about d-dimensional critical branching random walks in a random IID environment The environment is given by the rule that at every site independently, with probab
In this article, we consider a Branching Random Walk (BRW) on the real line where the underlying genealogical structure is given through a supercritical branching process in i.i.d. environment and satisfies Kesten-Stigum condition. The displacements
In this paper, we reveal the branching structure for a non-homogeneous random walk with bounded jumps. The ladder time $T_1,$ the first hitting time of $[1,infty)$ by the walk starting from $0,$ could be expressed in terms of a non-homogeneous multit
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the