ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of a multidimensional scenery with a branching random walk

221   0   0.0 ( 0 )
 نشر من قبل Angelica Pachon
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider a d-dimensional scenery seen along a simple symmetric branching random walk, where at each time each particle gives the color record it is seeing. We show that we can a.s. reconstruct the scenery up to equivalence from the color record of all the particles. For this we assume that the scenery has at least 2d + 1 colors which are i.i.d. with uniform probability. This is an improvement in comparison to [22] where the particles needed to see at each time a window around their current position. In [11] the reconstruction is done for d = 2 with only one particle instead of a branching random walk, but millions of colors are necessary.



قيم البحث

اقرأ أيضاً

We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $mathbb{P}[X geq t] sim a exp( -lambda t^r)$ for some constants $a, lambda > 0$ where $r in (0,1)$. We give a detailed description of the asymptotic behaviour of the position of the rightmost particle, proving almost-sure limit theorems, convergence in law and some integral tests. The limit theorems reveal interesting differences betweens the two regimes $ r in (0, 2/3)$ and $ r in (2/3, 1)$, with yet different limits in the boundary case $r = 2/3$.
We work under the A{i}d{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate nonnegative random variable that we denote by $Z$. It is shown t hat $mathbb{E} Zmathbf{1}_{{Zle x}}=log x+o(log x)$ as $xtoinfty$. Also, we provide necessary and sufficient conditions under which $mathbb{E} Zmathbf{1}_{{Zle x}}=log x+{rm const}+o(1)$ as $xtoinfty$. This more precise asymptotics is a key tool for proving distributional limit theorems which quantify the rate of convergence of the derivative martingale to its limit $Z$. The methodological novelty of the present paper is a three terms representation of a subharmonic function of at most linear growth for a killed centered random walk of finite variance. This yields the aforementioned asymptotics and should also be applicable to other models.
We discuss the quenched tail estimates for the random walk in random scenery. The random walk is the symmetric nearest neighbor walk and the random scenery is assumed to be independent and identically distributed, non-negative, and has a power law ta il. We identify the long time aymptotics of the upper deviation probability of the random walk in quenched random scenery, depending on the tail of scenery distribution and the amount of the deviation. The result is in turn applied to the tail estimates for a random walk in random conductance which has a layered structure.
In this work, we consider a modification of the usual Branching Random Walk (BRW), where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the $n$-th generation, which may be different from the dri ving increment distribution. We call this process last progeny modified branching random walk (LPM-BRW). Depending on the value of a parameter, $theta$, we classify the model in three distinct cases, namely, the boundary case, below the boundary case, and above the boundary case. Under very minimal assumptions on the underlying point process of the increments, we show that at the boundary case, when $theta$ takes a particular value $theta_0$, the maximum displacement converges to a limit after only an appropriate centering, which is of the form $c_1 n - c_2 log n$. We give an explicit formula for the constants $c_1$ and $c_2$ and show that $c_1$ is exactly the same, while $c_2$ is $1/3$ of the corresponding constants of the usual BRW. We also characterize the limiting distribution. We further show that below the boundary (that is, when $theta < theta_0$), the logarithmic correction term is absent. For above the boundary case (that is, when $theta > theta_0$), we have only a partial result, which indicates a possible existence of the logarithmic correction in the centering with exactly the same constant as that of the classical BRW. For $theta leq theta_0$, we further derive Brunet--Derrida-type results of point process convergence of our LPM-BRW to a decorated Poisson point process. Our proofs are based on a novel method of coupling the maximum displacement with a linear statistics associated with a more well-studied process in statistics, known as the smoothing transformation.
We prove large deviation results for the position of the rightmost particle, denoted by $M_n$, in a one-dimensional branching random walk in a case when Cramers condition is not satisfied. More precisely we consider step size distributions with stret ched exponential upper and lower tails, i.e.~both tails decay as $e^{-|t|^r}$ for some $rin( 0,1)$. It is known that in this case, $M_n$ grows as $n^{1/r}$ and in particular faster than linearly in $n$. Our main result is a large deviation principle for the laws of $n^{-1/r}M_n$ . In the proof we use a comparison with the maximum of (a random number of) independent random walks, denoted by $tilde M_n$, and we show a large deviation principle for the laws of $n^{-1/r}tilde M_n$ as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا