ﻻ يوجد ملخص باللغة العربية
We derive a lower bound for the probability that a random walk with i.i.d. increments and small negative drift $mu$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by $1-O(x|mu| log N)$. The approach is elementary and does not use strong approximation theorems.
We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $mathbb{P}[X geq t] sim a exp(
We prove large deviation results for the position of the rightmost particle, denoted by $M_n$, in a one-dimensional branching random walk in a case when Cramers condition is not satisfied. More precisely we consider step size distributions with stret
Let $xi(n, x)$ be the local time at $x$ for a recurrent one-dimensional random walk in random environment after $n$ steps, and consider the maximum $xi^*(n) = max_x xi(n,x)$. It is known that $limsup xi^*(n)/n$ is a positive constant a.s. We prove th
We consider the limit behavior of a one-dimensional random walk with unit jumps whose transition probabilities are modified every time the walk hits zero. The invariance principle is proved in the scheme of series where the size of modifications depe
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w