ﻻ يوجد ملخص باللغة العربية
Unconstrained remote gaze estimation remains challenging mostly due to its vulnerability to the large variability in head-pose. Prior solutions struggle to maintain reliable accuracy in unconstrained remote gaze tracking. Among them, appearance-based solutions demonstrate tremendous potential in improving gaze accuracy. However, existing works still suffer from head movement and are not robust enough to handle real-world scenarios. Especially most of them study gaze estimation under controlled scenarios where the collected datasets often cover limited ranges of both head-pose and gaze which introduces further bias. In this paper, we propose novel end-to-end appearance-based gaze estimation methods that could more robustly incorporate different levels of head-pose representations into gaze estimation. Our method could generalize to real-world scenarios with low image quality, different lightings and scenarios where direct head-pose information is not available. To better demonstrate the advantage of our methods, we further propose a new benchmark dataset with the most rich distribution of head-gaze combination reflecting real-world scenarios. Extensive evaluations on several public datasets and our own dataset demonstrate that our method consistently outperforms the state-of-the-art by a significant margin.
A major challenge for physically unconstrained gaze estimation is acquiring training data with 3D gaze annotations for in-the-wild and outdoor scenarios. In contrast, videos of human interactions in unconstrained environments are abundantly available
The interaction between the vestibular and ocular system has primarily been studied in controlled environments. Consequently, off-the shelf tools for categorization of gaze events (e.g. fixations, pursuits, saccade) fail when head movements are allow
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model th
Gaze estimation is a fundamental task in many applications of computer vision, human computer interaction and robotics. Many state-of-the-art methods are trained and tested on custom datasets, making comparison across methods challenging. Furthermore
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowledge from seen classes to unseen classes. Since semantic knowledge is built on attributes shared between different classes, which are highly local, strong prior fo