ﻻ يوجد ملخص باللغة العربية
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowledge from seen classes to unseen classes. Since semantic knowledge is built on attributes shared between different classes, which are highly local, strong prior for localization of object attribute is beneficial for visual-semantic embedding. Interestingly, when recognizing unseen images, human would also automatically gaze at regions with certain semantic clue. Therefore, we introduce a novel goal-oriented gaze estimation module (GEM) to improve the discriminative attribute localization based on the class-level attributes for ZSL. We aim to predict the actual human gaze location to get the visual attention regions for recognizing a novel object guided by attribute description. Specifically, the task-dependent attention is learned with the goal-oriented GEM, and the global image features are simultaneously optimized with the regression of local attribute features. Experiments on three ZSL benchmarks, i.e., CUB, SUN and AWA2, show the superiority or competitiveness of our proposed method against the state-of-the-art ZSL methods. The ablation analysis on real gaze data CUB-VWSW also validates the benefits and accuracy of our gaze estimation module. This work implies the promising benefits of collecting human gaze dataset and automatic gaze estimation algorithms on high-level computer vision tasks. The code is available at https://github.com/osierboy/GEM-ZSL.
A classic approach toward zero-shot learning (ZSL) is to map the input domain to a set of semantically meaningful attributes that could be used later on to classify unseen classes of data (e.g. visual data). In this paper, we propose to learn a visua
A drivers gaze is critical for determining their attention, state, situational awareness, and readiness to take over control from partially automated vehicles. Estimating the gaze direction is the most obvious way to gauge a drivers state under ideal
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor
In compositional zero-shot learning, the goal is to recognize unseen compositions (e.g. old dog) of observed visual primitives states (e.g. old, cute) and objects (e.g. car, dog) in the training set. This is challenging because the same state can for
In image recognition, there are many cases where training samples cannot cover all target classes. Zero-shot learning (ZSL) utilizes the class semantic information to classify samples of the unseen categories that have no corresponding samples contai