ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities

433   0   0.0 ( 0 )
 نشر من قبل Rakshit Kothari
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between the vestibular and ocular system has primarily been studied in controlled environments. Consequently, off-the shelf tools for categorization of gaze events (e.g. fixations, pursuits, saccade) fail when head movements are allowed. Our approach was to collect a novel, naturalistic, and multimodal dataset of eye+head movements when subjects performed everyday tasks while wearing a mobile eye tracker equipped with an inertial measurement unit and a 3D stereo camera. This Gaze-in-the-Wild dataset (GW) includes eye+head rotational velocities (deg/s), infrared eye images and scene imagery (RGB+D). A portion was labelled by coders into gaze motion events with a mutual agreement of 0.72 sample based Cohens $kappa$. This labelled data was used to train and evaluate two machine learning algorithms, Random Forest and a Recurrent Neural Network model, for gaze event classification. Assessment involved the application of established and novel event based performance metrics. Classifiers achieve $sim$90$%$ human performance in detecting fixations and saccades but fall short (60$%$) on detecting pursuit movements. Moreover, pursuit classification is far worse in the absence of head movement information. A subsequent analysis of feature significance in our best-performing model revealed a reliance upon absolute eye and head velocity, indicating that classification does not require spatial alignment of the head and eye tracking coordinate systems. The GW dataset, trained classifiers and evaluation metrics will be made publicly available with the intention of facilitating growth in the emerging area of head-free gaze event classification.



قيم البحث

اقرأ أيضاً

Gaze estimation is a fundamental task in many applications of computer vision, human computer interaction and robotics. Many state-of-the-art methods are trained and tested on custom datasets, making comparison across methods challenging. Furthermore , existing gaze estimation datasets have limited head pose and gaze variations, and the evaluations are conducted using different protocols and metrics. In this paper, we propose a new gaze estimation dataset called ETH-XGaze, consisting of over one million high-resolution images of varying gaze under extreme head poses. We collect this dataset from 110 participants with a custom hardware setup including 18 digital SLR cameras and adjustable illumination conditions, and a calibrated system to record ground truth gaze targets. We show that our dataset can significantly improve the robustness of gaze estimation methods across different head poses and gaze angles. Additionally, we define a standardized experimental protocol and evaluation metric on ETH-XGaze, to better unify gaze estimation research going forward. The dataset and benchmark website are available at https://ait.ethz.ch/projects/2020/ETH-XGaze
Unconstrained remote gaze estimation remains challenging mostly due to its vulnerability to the large variability in head-pose. Prior solutions struggle to maintain reliable accuracy in unconstrained remote gaze tracking. Among them, appearance-based solutions demonstrate tremendous potential in improving gaze accuracy. However, existing works still suffer from head movement and are not robust enough to handle real-world scenarios. Especially most of them study gaze estimation under controlled scenarios where the collected datasets often cover limited ranges of both head-pose and gaze which introduces further bias. In this paper, we propose novel end-to-end appearance-based gaze estimation methods that could more robustly incorporate different levels of head-pose representations into gaze estimation. Our method could generalize to real-world scenarios with low image quality, different lightings and scenarios where direct head-pose information is not available. To better demonstrate the advantage of our methods, we further propose a new benchmark dataset with the most rich distribution of head-gaze combination reflecting real-world scenarios. Extensive evaluations on several public datasets and our own dataset demonstrate that our method consistently outperforms the state-of-the-art by a significant margin.
Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks . In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over $95K$ bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on url{https://mobiface.github.io/}.
We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This datas et is compiled from video capture of the eye-region collected from 152 individual participants and is divided into four subsets: (i) 12,759 images with pixel-level annotations for key eye-regions: iris, pupil and sclera (ii) 252,690 unlabelled eye-images, (iii) 91,200 frames from randomly selected video sequence of 1.5 seconds in duration and (iv) 143 pairs of left and right point cloud data compiled from corneal topography of eye regions collected from a subset, 143 out of 152, participants in the study. A baseline experiment has been evaluated on OpenEDS for the task of semantic segmentation of pupil, iris, sclera and background, with the mean intersectionover-union (mIoU) of 98.3 %. We anticipate that OpenEDS will create opportunities to researchers in the eye tracking community and the broader machine learning and computer vision community to advance the state of eye-tracking for VR applications. The dataset is available for download upon request at https://research.fb.com/programs/openeds-challenge
Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involvi ng lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. To fill this gap, we introduce a new multi-illumination dataset of more than 1000 real scenes, each captured under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا