ﻻ يوجد ملخص باللغة العربية
The use of current-generated spin-orbit torques[1] to drive magnetization dynamics is under investigation to enable a new generation of non-volatile, low-power magnetic memory. Previous research has focused on spin-orbit torques generated by heavy metals[2-8], interfaces with strong Rashba interactions[9,10] and topological insulators [11-14]. These families of materials can all be well-described using models with noninteracting-electron bandstructures. Here, we show that electronic interactions within a strongly correlated heavy fermion material, the Kondo lattice system YbAl$_{3}$, can provide a large enhancement in spin-orbit torque. The spin-torque conductivity increases by approximately a factor of 4.5 as a function of decreasing temperature from room temperature to the coherence temperature of YbAl$_{3}$ ($T^* approx 37$ K), with a saturation at lower temperatures, achieving a maximum value greater than any heavy metal element. This temperature dependence mimics the increase and saturation at $T^*$ of the density of states at the Fermi level arising from the ytterbium 4$f$-derived heavy bands in the Kondo regime, as measured by angle-resolved photoemission spectroscopy[15]. We therefore identify the many-body Kondo resonance as the source of the large enhancement of spin-orbit torque in YbAl$_{3}$. Our observation reveals new opportunities in spin-orbit torque manipulation of magnetic memories by engineering quantum many-body states.
We report on the temperature and layer thickness variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements reveal dissimilar temperature evolutions of longitudinal and transverse effective magn
Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mechanisms underlying these torques can origina
Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins and magnetization. Mor
We show that the spin-orbit interaction (SOI) produced by the Coulomb fields of charged impurities provides an efficient mechanism for the bound states formation. The mechanism can be realized in 2D materials with sufficiently strong Rashba SOI provi
We investigate the injection of quasiparticle spin currents into a superconductor via spin pumping from an adjacent FM layer.$;$To this end, we use NbN/ch{Ni80Fe20}(Py)-heterostructures with a Pt spin sink layer and excite ferromagnetic resonance in