ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial spin-orbit torques

102   0   0.0 ( 0 )
 نشر من قبل Mark D. Stiles
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mechanisms underlying these torques can originate in both the bulk layers and at interfaces. Classifying spin-orbit torques based on the region that they originate in provides clues as to how to optimize the effect. While most bulk spin-orbit torque contributions are well studied, many of the interfacial contributions allowed by symmetry have yet to be fully explored theoretically and experimentally. To facilitate progress, we review interfacial spin-orbit torques from a semiclassical viewpoint and relate these contributions to recent experimental results. Within the same model, we show the relationship between different interface transport parameters. For charges and spins flowing perpendicular to the interface, interfacial spin-orbit coupling both modifies the mixing conductance of magnetoelectronic circuit theory and gives rise to spin memory loss. For in-plane electric fields, interfacial spin-orbit coupling gives rise to torques described by spin-orbit filtering, spin swapping and precession. In addition, these same interfacial processes generate spin currents that flow into the non-magnetic layer. For in-plane electric fields in trilayer structures, the spin currents generated at the interface between one ferromagnetic layer and the non-magnetic spacer layer can propagate through the non-magnetic layer to produce novel torques on the other ferromagnetic layer.



قيم البحث

اقرأ أيضاً

In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here, we calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism using first principles methods. We focus exclusively on the analogue to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the field-like torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins and magnetization. Mor e recently interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this Roadmap paper, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, two-dimensional materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three-terminal and two-terminal SOT-magnetoresistive random-access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain wall and skyrmion racetrack memories. This paper aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extende d ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
Transition metal dichalcogenides (TMDs) are promising materials for efficient generation of current-induced spin-orbit torques on an adjacent ferromagnetic layer. Numerous effects, both interfacial and bulk, have been put forward to explain the diffe rent torques previously observed. Thus far, however, there is no clear consensus on the microscopic origin underlying the spin-orbit torques observed in these TMD/ferromagnet bilayers. To shine light on the microscopic mechanisms at play, here we perform thickness dependent spin-orbit torque measurements on the semiconducting WSe$_{2}$/permalloy bilayer with various WSe$_{2}$ layer thickness, down to the monolayer limit. We observe a large out-of-plane field-like torque with spin-torque conductivities up to $1times10^4 ({hbar}/2e) ({Omega}m)^{-1}$. For some devices, we also observe a smaller in-plane antidamping-like torque, with spin-torque conductivities up to $4times10^{3} ({hbar}/2e) ({Omega}m)^{-1}$, comparable to other TMD-based systems. Both torques show no clear dependence on the WSe$_{2}$ thickness, as expected for a Rashba system. Unexpectedly, we observe a strong in-plane magnetic anisotropy - up to about $6.6times10^{4} erg/cm^{3}$ - induced in permalloy by the underlying hexagonal WSe$_{2}$ crystal. Using scanning transmission electron microscopy, we confirm that the easy axis of the magnetic anisotropy is aligned to the armchair direction of the WSe$_{2}$. Our results indicate a strong interplay between the ferromagnet and TMD, and unveil the nature of the spin-orbit torques in TMD-based devices. These findings open new avenues for possible methods for optimizing the torques and the interaction with interfaced magnets, important for future non-volatile magnetic devices for data processing and storage.
Spin-orbit interaction (SOI) couples charge and spin transport, enabling electrical control of magnetization. A quintessential example of SOI-induced transport is the anomalous Hall effect (AHE), first observed in 1880, in which an electric current p erpendicular to the magnetization in a magnetic film generates charge accumulation on the surfaces. Here we report the observation of a counterpart of the AHE that we term the anomalous spin-orbit torque (ASOT), wherein an electric current parallel to the magnetization generates opposite spin-orbit torques on the surfaces of the magnetic film. We interpret the ASOT as due to a spin-Hall-like current generated with an efficiency of 0.053+/-0.003 in Ni80Fe20, comparable to the spin Hall angle of Pt. Similar effects are also observed in other common ferromagnetic metals, including Co, Ni, and Fe. First principles calculations corroborate the order of magnitude of the measured values. This work suggests that a strong spin current with spin polarization transverse to magnetization can exist in a ferromagnet, despite spin dephasing. It challenges the current understanding of spin-orbit torque in magnetic/nonmagnetic bilayers, in which the charge-spin conversion in the magnetic layer has been largely neglected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا