ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of transport mechanisms in organic multiferroic tunnel junctions

315   0   0.0 ( 0 )
 نشر من قبل Yuan Lu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric control of spin-polarization at ferromagnet (FM)/ferroelectric organic (FE-Org) interface by electrically switching the ferroelectric polarization of the FE-Org has been recently realized. However, there is still a lack of understanding of the transport properties in OMFTJs, especially the interplay between the ferroelectric domain structure in the organic barrier and the spin-polarized electron tunneling through the barrier. Here, we report on a systematic study of the temperature dependent transport behavior in La0.6Sr0.4MnO3/PVDF/Co OMFTJs. It is found that the thermal fluctuation of the ferroelectric domains plays an important role on the transport properties. When T>120K, the opposite temperature dependence of resistance for in up and down ferroelectric polarization states results in a rapid diminishing of tunneling electroresistance (TER). These results contribute to the understanding of the transport properties for designing high performance OMFTJs for memristor and spintronics applications.



قيم البحث

اقرأ أيضاً

Manipulation of tunneling spin-polarized electrons via a ferroelectric interlayer sandwiched between two ferromagnetic electrodes, dubbed Multiferroic Tunnel Junctions (MFTJs), can be achieved not only by the magnetic alignments of two ferromagnets b ut also by the electric polarization of the ferroelectric interlayer, providing great opportunities for next-generation multi-state memory devices. Here we show that a La0.67Sr0.33MnO3 (LSMO)/PbZr0.2Ti0.8O3(PZT)/Co structured MFTJ device can exhibit multilevel resistance states in the presence of gradually reversed ferroelectric domains via tunneling electro-resistance and tunneling magnetoresistance, respectively. The nonvolatile ferroelectric control in the MFTJ can be attributed to separate contributions arising from two independent ferroelectric channels in the PZT interlayer with opposite polarization. Our study shows the dominant role of mixed ferroelectric states on achieving accumulative electrical modulation of multilevel resistance states in MFTJs, paving the way for multifunctional device applications.
We report on the fabrication of organic multiferroic tunnel junction (OMFTJ) based on an organic barrier of Poly(vinylidene fluoride) (PVDF):Fe3O4 nanocomposite. By adding Fe3O4 nanoparticles into the PVDF barrier, we found that the ferroelectric pro perties of the OMFTJ are considerably improved compared to that with pure PVDF barrier. It can lead to a tunneling electroresistance (TER) of about 450% at 10K and 100% at room temperature (RT), which is much higher than that of the pure PVDF based device (70% at 10K and 7% at RT). OMFTJs based on the PVDF:Fe3O4 nanocomposite could open new functionalities in smart multiferroic devices via the interplay of the magnetism of nanoparticle with the ferroelectricity of the organic barrier.
The transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tun neling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias. We propose a general model to explain the bias dependence in these and similar systems reported earlier. The model predicts the existence of two distinct TMR regimes: (i) tunneling regime when the interface is modified with layers of a different insulator and (ii) resonant regime when thin metallic layers are inserted at the interface. We demonstrate that in the tunneling regime negative TMR is due to the high voltage which overcomes the exchange splitting in the electrodes, while the asymmetric bias dependence of TMR is due to the interface transmission probabilities. In the resonant regime inversion of TMR could happen at zero voltage depending on the alignment of the resonance levels with the Fermi surfaces of the electrodes. Moreover, the model predicts a regime in which TMR has different sign at positive and negative bias suggesting possibilities of combining memory with logic functions.
Understanding quantitatively the heating dynamics in magnetic tunnel junctions (MTJ) submitted to current pulses is very important in the context of spin-transfer-torque magnetic random access memory development. Here we provide a method to probe the heating of MTJ using the RKKY coupling of a synthetic ferrimagnetic storage layer as a thermal sensor. The temperature increase versus applied bias voltage is measured thanks to the decrease of the spin-flop field with temperature. This method allows distinguishing spin transfer torque (STT) effects from the influence of temperature on the switching field. The heating dynamics is then studied in real-time by probing the conductance variation due to spin-flop rotation during heating. This approach provides a new method for measuring fast heating in spintronic devices, particularly magnetic random access memory (MRAM) using thermally assisted or spin transfer torque writing.
152 - H. Sato , M. Yamanouchi , K. Miura 2012
Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thickne sses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا