ﻻ يوجد ملخص باللغة العربية
We report on the fabrication of organic multiferroic tunnel junction (OMFTJ) based on an organic barrier of Poly(vinylidene fluoride) (PVDF):Fe3O4 nanocomposite. By adding Fe3O4 nanoparticles into the PVDF barrier, we found that the ferroelectric properties of the OMFTJ are considerably improved compared to that with pure PVDF barrier. It can lead to a tunneling electroresistance (TER) of about 450% at 10K and 100% at room temperature (RT), which is much higher than that of the pure PVDF based device (70% at 10K and 7% at RT). OMFTJs based on the PVDF:Fe3O4 nanocomposite could open new functionalities in smart multiferroic devices via the interplay of the magnetism of nanoparticle with the ferroelectricity of the organic barrier.
In tunnel junctions with ferroelectric barriers, switching the polarization direction modifies the electrostatic potential profile and the associated average tunnel barrier height. This results in strong changes of the tunnel transmission and associa
Ferroelectric tunnel junctions (FTJ) based on hafnium zirconium oxide (Hf1-xZrxO2; HZO) are a promising candidate for future applications, such as low-power memories and neuromorphic computing. The tunneling electroresistance (TER) is tunable through
Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric contr
Voltage-induced ferromagnetic resonance (V-FMR) in magnetic tunnel junctions (MTJs) with a W buffer is investigated. Perpendicular magnetic anisotropy (PMA) energy is controlled by both thickness of a CoFeB free layer deposited directly on the W buff
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conve