ترغب بنشر مسار تعليمي؟ اضغط هنا

CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions

116   0   0.0 ( 0 )
 نشر من قبل Hideo Sato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thicknesses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.


قيم البحث

اقرأ أيضاً

Current-driven magnetization switching in low-resistance Co40Fe40B20/MgO/Co40Fe40B20 magnetic tunnel junctions (MTJs) is reported. The critical-current densities Jc required for current-driven switching in samples annealed at 270C and 300C are found to be as low as 7.8 x 10^5 A/cm^2 and 8.8 x 10^5 A/cm^2 with accompanying tunnel magnetoresistance (TMR) ratios of 49% and 73 %, respectively. Further annealing of the samples at 350C increases TMR ratio to 160 %, while accompanying Jc increases to 2.5 x 10^6 A/cm^2. We attribute the low Jc to the high spin-polarization of tunnel current and small MsV product of the CoFeB single free layer, where Ms is the saturation magnetization and V the volume of the free layer.
We investigated the dependence of giant tunnel magnetoresistance (TMR) on the thickness of an MgO barrier and on the annealing temperature of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions deposited on SiO2/Si wafers. The resistance-area product exponentially increases with MgO thickness, indicating that the quality of MgO barriers is high in the investigated thickness range of 1.15-2.4 nm. High-resolution transmission electron microscope images show that annealing at 375 C results in the formation of crystalline CoFeB/MgO/CoFeB structures, even though CoFeB electrodes are amorphous in the as-sputtered state. The TMR ratio increases with annealing temperature and is as high as 260% at room temperature and 403% at 5 K.
92 - G. Reiss , J. Ludwig , K. Rott 2019
Thin electrodes of magnetic tunnel junctions can show superparamagnetism at surprisingly low temperature. We analysed their thermally induced switching for varying temperature, magnetic and electric field. Although the dwell times follow an Arrhenius law, they are orders of magnitude too small compared to a model of single domain activation. Including entropic effects removes this inconsistency and leads to a magnetic activation volume much smaller than that of the electrode. Comparing data for varying barrier thickness then allows to separate the impact of Zeman energy, spin-transfer-torque and voltage induced anisotropy change on the dwell times. Based on these results, we demonstrate a tuning of the switching rates by combining magnetic and electric fields, which opens a path for their application in noisy neural networks.
We present a comparison of the tunnel magneto-Seebeck effect for laser induced and intrinsic heating. Therefore, Co$_{40}$Fe$_{40}$B$_{20}$/MgAl$_2$O$_4$ and Co$_{25}$Fe$_{55}$B$_{20}$/MgO magnetic tunnel junctions have been prepared. The TMS ratio o f 3,% in case of the MAO MTJ agrees well with ratios found for other barrier materials, while the TMS ratio of 23,% of the MgO MTJ emphasizes the influence of the CoFe composition. We find results using the intrinsic method that differ in sign and magnitude in comparison to the results of the laser heating. The intrinsic contributions can alternatively be explained by the Brinkman model and the given junction properties. Especially, we are able to demonstrate that the symmetric contribution is solely influenced by the barrier asymmetry. Thus, we conclude that the symmetry analysis used for the intrinsic method is not suitable to unambiguously identify an intrinsic tunnel magneto-Seebeck effect.
We report the intrinsic critical current density (Jc0) in current-induced magnetization switching and the thermal stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature, respectively) in MgO base d magnetic tunnel junctions with a Co40Fe40B20(2nm)/Ru(0.7-2.4nm)/Co40Fe40B20(2nm) synthetic ferrimagnetic (SyF) free layer. We show that Jc0 and E/kBT can be determined by analyzing the average critical current density as a function of coercivity using the Slonczewskis model taking into account thermal fluctuation. We find that high antiferromagnetic coupling between the two CoFeB layers in a SyF free layer results in reduced Jc0 without reducing high E/kBT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا