ﻻ يوجد ملخص باللغة العربية
The process of information fusion needs to deal with a large number of uncertain information with multi-source, heterogeneity, inaccuracy, unreliability, and incompleteness. In practical engineering applications, Dempster-Shafer evidence theory is widely used in multi-source information fusion owing to its effectiveness in data fusion. Information sources have an important impact on multi-source information fusion in an environment of complex, unstable, uncertain, and incomplete characteristics. To address multi-source information fusion problem, this paper considers the situation of uncertain information modeling from the closed world to the open world assumption and studies the generation of basic probability assignment (BPA) with incomplete information. In this paper, a new method is proposed to generate generalized basic probability assignment (GBPA) based on the triangular fuzzy number model under the open world assumption. The proposed method can not only be used in different complex environments simply and flexibly, but also have less information loss in information processing. Finally, a series of comprehensive experiments basing on the UCI data sets are used to verify the rationality and superiority of the proposed method.
In real life, lots of information merges from time to time. To appropriately describe the actual situations, lots of theories have been proposed. Among them, Dempster-Shafer evidence theory is a very useful tool in managing uncertain information. To
In this paper, we propose in Dezert-Smarandache Theory (DSmT) framework, a new probabilistic transformation, called DSmP, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discern
The main aim of the present work is to arrive at a mathematical theory close to the historically original conception of generalized functions, i.e. set theoretical functions defined on, and with values in, a suitable ring of scalars and sharing a num
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any si
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability d