ﻻ يوجد ملخص باللغة العربية
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning commutation with rotation, continu
We consider the uniqueness of solution (i.e., nonsingularity) of systems of $r$ generalized Sylvester and $star$-Sylvester equations with $ntimes n$ coefficients. After several reductions, we show that it is sufficient to analyze periodic systems hav
The multilinear Pagerank model [Gleich, Lim and Yu, 2015] is a tensor-based generalization of the Pagerank model. Its computation requires solving a system of polynomial equations that contains a parameter $alpha in [0,1)$. For $alpha approx 1$, this
In this paper, we propose a numerical method to solve the classic $L^2$-optimal transport problem. Our algorithm is based on use of multiple shooting, in combination with a continuation procedure, to solve the boundary value problem associated to the
Stochastic uncertainties in complex dynamical systems lead to variability of system states, which can in turn degrade the closed-loop performance. This paper presents a stochastic model predictive control approach for a class of nonlinear systems wit