ﻻ يوجد ملخص باللغة العربية
Although Shannon theory states that it is asymptotically optimal to separate the source and channel coding as two independent processes, in many practical communication scenarios this decomposition is limited by the finite bit-length and computational power for decoding. Recently, neural joint source-channel coding (NECST) is proposed to sidestep this problem. While it leverages the advancements of amortized inference and deep learning to improve the encoding and decoding process, it still cannot always achieve compelling results in terms of compression and error correction performance due to the limited robustness of its learned coding networks. In this paper, motivated by the inherent connections between neural joint source-channel coding and discrete representation learning, we propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme. More specifically, on the encoder side, we propose to explicitly maximize the mutual information between the codeword and data; while on the decoder side, the amortized reconstruction is regularized within an adversarial framework. Extensive experiments conducted on various real-world datasets evidence that our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
For reliable transmission across a noisy communication channel, classical results from information theory show that it is asymptotically optimal to separate out the source and channel coding processes. However, this decomposition can fall short in th
Multi-task learning (MTL) is an efficient way to improve the performance of related tasks by sharing knowledge. However, most existing MTL networks run on a single end and are not suitable for collaborative intelligence (CI) scenarios. In this work,
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and di
Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. I
In this paper, we study the problem of autonomously discovering temporally abstracted actions, or options, for exploration in reinforcement learning. For learning diverse options suitable for exploration, we introduce the infomax termination objectiv