ﻻ يوجد ملخص باللغة العربية
Multi-task learning (MTL) is an efficient way to improve the performance of related tasks by sharing knowledge. However, most existing MTL networks run on a single end and are not suitable for collaborative intelligence (CI) scenarios. In this work, we propose an MTL network with a deep joint source-channel coding (JSCC) framework, which allows operating under CI scenarios. We first propose a feature fusion based MTL network (FFMNet) for joint object detection and semantic segmentation. Compared with other MTL networks, FFMNet gets higher performance with fewer parameters. Then FFMNet is split into two parts, which run on a mobile device and an edge server respectively. The feature generated by the mobile device is transmitted through the wireless channel to the edge server. To reduce the transmission overhead of the intermediate feature, a deep JSCC network is designed. By combining two networks together, the whole model achieves 512 times compression for the intermediate feature and a performance loss within 2% on both tasks. At last, by training with noise, the FFMNet with JSCC is robust to various channel conditions and outperforms the separate source and channel coding scheme.
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and di
For reliable transmission across a noisy communication channel, classical results from information theory show that it is asymptotically optimal to separate out the source and channel coding processes. However, this decomposition can fall short in th
Considering the problem of joint source-channel coding (JSCC) for multi-user transmission of images over noisy channels, an autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper. In the proposed JSCC scheme, the de
We investigate joint source channel coding (JSCC) for wireless image transmission over multipath fading channels. Inspired by recent works on deep learning based JSCC and model-based learning methods, we combine an autoencoder with orthogonal frequen
Image segmentation is a primary task in many medical applications. Recently, many deep networks derived from U-Net have been extensively used in various medical image segmentation tasks. However, in most of the cases, networks similar to U-net produc