ﻻ يوجد ملخص باللغة العربية
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and directly map the source images to complex-valued baseband samples for orthogonal frequency division multiplexing (OFDM) transmission. The proposed model-driven machine learning approach eliminates the need for separate source and channel coding while integrating an OFDM datapath to cope with multipath fading channels. The end-to-end JSCC communication system combines trainable CNN layers with non-trainable but differentiable layers representing the multipath channel model and OFDM signal processing blocks. Our results show that injecting domain expert knowledge by incorporating OFDM baseband processing blocks into the machine learning framework significantly enhances the overall performance compared to an unstructured CNN. Our method outperforms conventional schemes that employ state-of-the-art but separate source and channel coding such as BPG and LDPC with OFDM. Moreover, our method is shown to be robust against non-linear signal clipping in OFDM for various channel conditions that do not match the model parameter used during the training.
We investigate joint source channel coding (JSCC) for wireless image transmission over multipath fading channels. Inspired by recent works on deep learning based JSCC and model-based learning methods, we combine an autoencoder with orthogonal frequen
Considering the problem of joint source-channel coding (JSCC) for multi-user transmission of images over noisy channels, an autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper. In the proposed JSCC scheme, the de
Recently, semantic communication has been brought to the forefront because of its great success in deep learning (DL), especially Transformer. Even if semantic communication has been successfully applied in the sentence transmission to reduce semanti
For reliable transmission across a noisy communication channel, classical results from information theory show that it is asymptotically optimal to separate out the source and channel coding processes. However, this decomposition can fall short in th
Multi-task learning (MTL) is an efficient way to improve the performance of related tasks by sharing knowledge. However, most existing MTL networks run on a single end and are not suitable for collaborative intelligence (CI) scenarios. In this work,