ﻻ يوجد ملخص باللغة العربية
Whole understanding of the surroundings is paramount to autonomous systems. Recent works have shown that deep neural networks can learn geometry (depth) and motion (optical flow) from a monocular video without any explicit supervision from ground truth annotations, particularly hard to source for these two tasks. In this paper, we take an additional step toward holistic scene understanding with monocular cameras by learning depth and motion alongside with semantics, with supervision for the latter provided by a pre-trained network distilling proxy ground truth images. We address the three tasks jointly by a) a novel training protocol based on knowledge distillation and self-supervision and b) a compact network architecture which enables efficient scene understanding on both power hungry GPUs and low-power embedded platforms. We thoroughly assess the performance of our framework and show that it yields state-of-the-art results for monocular depth estimation, optical flow and motion segmentation.
There is growing interest in artificial intelligence to build socially intelligent robots. This requires machines to have the ability to read peoples emotions, motivations, and other factors that affect behavior. Towards this goal, we introduce a nov
In this paper, we address the problem of inferring the layout of complex road scenes from video sequences. To this end, we formulate it as a top-view road attributes prediction problem and our goal is to predict these attributes for each frame both a
We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent var
Learning on 3D scene-based point cloud has received extensive attention as its promising application in many fields, and well-annotated and multisource datasets can catalyze the development of those data-driven approaches. To facilitate the research
Numerous scene text detection methods have been proposed in recent years. Most of them declare they have achieved state-of-the-art performances. However, the performance comparison is unfair, due to lots of inconsistent settings (e.g., training data,