ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive Studies for Arbitrary-shape Scene Text Detection

133   0   0.0 ( 0 )
 نشر من قبل Pengwen Dai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous scene text detection methods have been proposed in recent years. Most of them declare they have achieved state-of-the-art performances. However, the performance comparison is unfair, due to lots of inconsistent settings (e.g., training data, backbone network, multi-scale feature fusion, evaluation protocols, etc.). These various settings would dissemble the pros and cons of the proposed core techniques. In this paper, we carefully examine and analyze the inconsistent settings, and propose a unified framework for the bottom-up based scene text detection methods. Under the unified framework, we ensure the consistent settings for non-core modules, and mainly investigate the representations of describing arbitrary-shape scene texts, e.g., regressing points on text contours, clustering pixels with predicted auxiliary information, grouping connected components with learned linkages, etc. With the comprehensive investigations and elaborate analyses, it not only cleans up the obstacle of understanding the performance differences between existing methods but also reveals the advantages and disadvantages of previous models under fair comparisons.



قيم البحث

اقرأ أيضاً

101 - Chuang Yang , Mulin Chen , Qi Wang 2021
Existing object detection-based text detectors mainly concentrate on detecting horizontal and multioriented text. However, they do not pay enough attention to complex-shape text (curved or other irregularly shaped text). Recently, segmentation-based text detection methods have been introduced to deal with the complex-shape text; however, the pixel level processing increases the computational cost significantly. To further improve the accuracy and efficiency, we propose a novel detection framework for arbitrary-shape text detection, termed as RayNet. RayNet uses Center Point Set (CPS) and Ray Distance (RD) to fit text, where CPS is used to determine the text general position and the RD is combined with CPS to compute Ray Points (RP) to localize the text accurate shape. Since RP are disordered, we develop the Ray Points Connection (RPC) algorithm to reorder RP, which significantly improves the detection performance of complex-shape text. RayNet achieves impressive performance on existing curved text dataset (CTW1500) and quadrangle text dataset (ICDAR2015), which demonstrate its superiority against several state-of-the-art methods.
Arbitrary shape text detection is a challenging task due to the high complexity and variety of scene texts. In this work, we propose a novel adaptive boundary proposal network for arbitrary shape text detection, which can learn to directly produce ac curate boundary for arbitrary shape text without any post-processing. Our method mainly consists of a boundary proposal model and an innovative adaptive boundary deformation model. The boundary proposal model constructed by multi-layer dilated convolutions is adopted to produce prior information (including classification map, distance field, and direction field) and coarse boundary proposals. The adaptive boundary deformation model is an encoder-decoder network, in which the encoder mainly consists of a Graph Convolutional Network (GCN) and a Recurrent Neural Network (RNN). It aims to perform boundary deformation in an iterative way for obtaining text instance shape guided by prior information from the boundary proposal model. In this way, our method can directly and efficiently generate accurate text boundaries without complex post-processing. Extensive experiments on publicly available datasets demonstrate the state-of-the-art performance of our method.
69 - Yixing Zhu , Jun Du 2018
Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edg e of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection architectures such as Faster R-CNN and R-FCN. Specifically, we first generate the smallest rectangular box including the text with region proposal network (RPN), then isometrically regress the points on the edge of text by using the vertically and horizontally sliding lines. To make full use of information and reduce redundancy, we calculate x-coordinate or y-coordinate of target point by the rectangular box position, and just regress the remaining y-coordinate or x-coordinate. Accordingly we can not only reduce the parameters of system, but also restrain the points which will generate more regular polygon. Our approach achieved competitive results on traditional ICDAR2015 Incidental Scene Text benchmark and curve text detection dataset CTW1500.
Arbitrary shape text detection is a challenging task due to the high variety and complexity of scenes texts. In this paper, we propose a novel unified relational reasoning graph network for arbitrary shape text detection. In our method, an innovative local graph bridges a text proposal model via Convolutional Neural Network (CNN) and a deep relational reasoning network via Graph Convolutional Network (GCN), making our network end-to-end trainable. To be concrete, every text instance will be divided into a series of small rectangular components, and the geometry attributes (e.g., height, width, and orientation) of the small components will be estimated by our text proposal model. Given the geometry attributes, the local graph construction model can roughly establish linkages between different text components. For further reasoning and deducing the likelihood of linkages between the component and its neighbors, we adopt a graph-based network to perform deep relational reasoning on local graphs. Experiments on public available datasets demonstrate the state-of-the-art performance of our method.
The latest trend in the bottom-up perspective for arbitrary-shape scene text detection is to reason the links between text segments using Graph Convolutional Network (GCN). Notwithstanding, the performance of the best performing bottom-up method is s till inferior to that of the best performing top-down method even with the help of GCN. We argue that this is not mainly caused by the limited feature capturing ability of the text proposal backbone or GCN, but by their failure to make a full use of visual-relational features for suppressing false detection, as well as the sub-optimal route-finding mechanism used for grouping text segments. In this paper, we revitalize the classic text detection frameworks by aggregating the visual-relational features of text with two effective false positive/negative suppression mechanisms. First, dense overlapping text segments depicting the `characterness and `streamline of text are generated for further relational reasoning and weakly supervised segment classification. Here, relational graph features are used for suppressing false positives/negatives. Then, to fuse the relational features with visual features, a Location-Aware Transfer (LAT) module is designed to transfer texts relational features into visual compatible features with a Fuse Decoding (FD) module to enhance the representation of text regions for the second step suppression. Finally, a novel multiple-text-map-aware contour-approximation strategy is developed, instead of the widely-used route-finding process. Experiments conducted on five benchmark datasets, i.e., CTW1500, Total-Text, ICDAR2015, MSRA-TD500, and MLT2017 demonstrate that our method outperforms the state-of-the-art performance when being embedded in a classic text detection framework, which revitalises the superb strength of the bottom-up methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا