ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Road Layout from Videos as a Whole

85   0   0.0 ( 0 )
 نشر من قبل Bingbing Zhuang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we address the problem of inferring the layout of complex road scenes from video sequences. To this end, we formulate it as a top-view road attributes prediction problem and our goal is to predict these attributes for each frame both accurately and consistently. In contrast to prior work, we exploit the following three novel aspects: leveraging camera motions in videos, including context cuesand incorporating long-term video information. Specifically, we introduce a model that aims to enforce prediction consistency in videos. Our model consists of one LSTM and one Feature Transform Module (FTM). The former implicitly incorporates the consistency constraint with its hidden states, and the latter explicitly takes the camera motion into consideration when aggregating information along videos. Moreover, we propose to incorporate context information by introducing road participants, e.g. objects, into our model. When the entire video sequence is available, our model is also able to encode both local and global cues, e.g. information from both past and future frames. Experiments on two data sets show that: (1) Incorporating either globalor contextual cues improves the prediction accuracy and leveraging both gives the best performance. (2) Introducing the LSTM and FTM modules improves the prediction consistency in videos. (3) The proposed method outperforms the SOTA by a large margin.

قيم البحث

اقرأ أيضاً

Whole understanding of the surroundings is paramount to autonomous systems. Recent works have shown that deep neural networks can learn geometry (depth) and motion (optical flow) from a monocular video without any explicit supervision from ground tru th annotations, particularly hard to source for these two tasks. In this paper, we take an additional step toward holistic scene understanding with monocular cameras by learning depth and motion alongside with semantics, with supervision for the latter provided by a pre-trained network distilling proxy ground truth images. We address the three tasks jointly by a) a novel training protocol based on knowledge distillation and self-supervision and b) a compact network architecture which enables efficient scene understanding on both power hungry GPUs and low-power embedded platforms. We thoroughly assess the performance of our framework and show that it yields state-of-the-art results for monocular depth estimation, optical flow and motion segmentation.
There is growing interest in artificial intelligence to build socially intelligent robots. This requires machines to have the ability to read peoples emotions, motivations, and other factors that affect behavior. Towards this goal, we introduce a nov el dataset called MovieGraphs which provides detailed, graph-based annotations of social situations depicted in movie clips. Each graph consists of several types of nodes, to capture who is present in the clip, their emotional and physical attributes, their relationships (i.e., parent/child), and the interactions between them. Most interactions are associated with topics that provide additional details, and reasons that give motivations for actions. In addition, most interactions and many attributes are grounded in the video with time stamps. We provide a thorough analysis of our dataset, showing interesting common-sense correlations between different social aspects of scenes, as well as across scenes over time. We propose a method for querying videos and text with graphs, and show that: 1) our graphs contain rich and sufficient information to summarize and localize each scene; and 2) subgraphs allow us to describe situations at an abstract level and retrieve multiple semantically relevant situations. We also propose methods for interaction understanding via ordering, and reason understanding. MovieGraphs is the first benchmark to focus on inferred properties of human-centric situations, and opens up an exciting avenue towards socially-intelligent AI agents.
We present a method for decomposing the 3D scene flow observed from a moving stereo rig into stationary scene elements and dynamic object motion. Our unsupervised learning framework jointly reasons about the camera motion, optical flow, and 3D motion of moving objects. Three cooperating networks predict stereo matching, camera motion, and residual flow, which represents the flow component due to object motion and not from camera motion. Based on rigid projective geometry, the estimated stereo depth is used to guide the camera motion estimation, and the depth and camera motion are used to guide the residual flow estimation. We also explicitly estimate the 3D scene flow of dynamic objects based on the residual flow and scene depth. Experiments on the KITTI dataset demonstrate the effectiveness of our approach and show that our method outperforms other state-of-the-art algorithms on the optical flow and visual odometry tasks.
153 - Bo Zhao , Lili Meng , Weidong Yin 2018
Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may possess and, as a result, exponential set of images consistent with a specified layout. To address these challenges, we propose a novel approach for layout-based image generation; we call it Layout2Im. Given the coarse spatial layout (bounding boxes + object categories), our model can generate a set of realistic images which have the correct objects in the desired locations. The representation of each object is disentangled into a specified/certain part (category) and an unspecified/uncertain part (appearance). The category is encoded using a word embedding and the appearance is distilled into a low-dimensional vector sampled from a normal distribution. Individual object representations are composed together using convolutional LSTM, to obtain an encoding of the complete layout, and then decoded to an image. Several loss terms are introduced to encourage accurate and diverse generation. The proposed Layout2Im model significantly outperforms the previous state of the art, boosting the best reported inception score by 24.66% and 28.57% on the very challenging COCO-Stuff and Visual Genome datasets, respectively. Extensive experiments also demonstrate our methods ability to generate complex and diverse images with multiple objects.
A vehicle driving along the road is surrounded by many objects, but only a small subset of them influence the drivers decisions and actions. Learning to estimate the importance of each object on the drivers real-time decision-making may help better u nderstand human driving behavior and lead to more reliable autonomous driving systems. Solving this problem requires models that understand the interactions between the ego-vehicle and the surrounding objects. However, interactions among other objects in the scene can potentially also be very helpful, e.g., a pedestrian beginning to cross the road between the ego-vehicle and the car in front will make the car in front less important. We propose a novel framework for object importance estimation using an interaction graph, in which the features of each object node are updated by interacting with others through graph convolution. Experiments show that our model outperforms state-of-the-art baselines with much less input and pre-processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا