ﻻ يوجد ملخص باللغة العربية
The simultaneous detection of electromagnetic and gravitational waves from the coalescence of two neutron stars (GW170817 and GRB170817A) has ushered in a new era of multi-messenger astronomy, with electromagnetic detections spanning from gamma to radio. This great opportunity for new scientific investigations raises the issue of how the available multi-messenger tools can best be integrated to constitute a powerful method to study the transient universe in particular. To facilitate the classification of possible optical counterparts to gravitational-wave events, it is important to optimize the scheduling of observations and the filtering of transients, both key elements of the follow-up process. In this work, we describe the existing workflow whereby telescope networks such as GRANDMA and GROWTH are currently scheduled; we then present modifications we have developed for the scheduling process specifically, so as to face the relevant challenges that have appeared during the latest observing run of Advanced LIGO and Advanced Virgo. We address issues with scheduling more than one epoch for multiple fields within a skymap, especially for large and disjointed localizations. This is done in two ways: by optimizing the maximum number of fields that can be scheduled, and by splitting up the lobes within the skymap by right ascension to be scheduled individually. In addition, we implement the ability to take previously observed fields into consideration when rescheduling. We show the improvements that these modifications produce in making the search for optical counterparts more efficient, and we point to areas needing further improvement.
The discovery of the electromagnetic counterparts to the binary neutron star merger GW170817 has opened the era of GW+EM multi-messenger astronomy. Exploiting this breakthrough requires increasing samples to explore the diversity of kilonova behaviou
We present simulated observations to assess the ability of LSST and the WFD survey to detect and characterize kilonovae - the optical emission associated with binary neutron star (and possibly black hole - neutron star) mergers. We expand on previous
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors
Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called h
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR)