ﻻ يوجد ملخص باللغة العربية
The discovery of the electromagnetic counterparts to the binary neutron star merger GW170817 has opened the era of GW+EM multi-messenger astronomy. Exploiting this breakthrough requires increasing samples to explore the diversity of kilonova behaviour and provide more stringent constraints on the Hubble constant, and tests of fundamental physics. LSST can play a key role in this field in the 2020s, when the gravitational wave detector network is expected to detect higher rates of merger events involving neutron stars ($sim$10s per year) out to distances of several hundred Mpc. Here we propose comprehensive target-of-opportunity (ToOs) strategies for follow-up of gravitational-wave sources that will make LSST the premiere machine for discovery and early characterization for neutron star mergers and other gravitational-wave sources.
We present simulated observations to assess the ability of LSST and the WFD survey to detect and characterize kilonovae - the optical emission associated with binary neutron star (and possibly black hole - neutron star) mergers. We expand on previous
The simultaneous detection of electromagnetic and gravitational waves from the coalescence of two neutron stars (GW170817 and GRB170817A) has ushered in a new era of multi-messenger astronomy, with electromagnetic detections spanning from gamma to ra
Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In thi
As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to date. The most massive observed black holes probe the physics of pair instability supernovae while providing clues about the environments
We present detailed simulations of black hole-neutron star (BH-NS) mergers kilonova and gamma-ray burst (GRB) afterglow and kilonova luminosity function, and discuss the detectability of electromagnetic (EM) counterpart in connection with gravitation