ترغب بنشر مسار تعليمي؟ اضغط هنا

An early warning system for electromagnetic follow-up of gravitational-wave events

125   0   0.0 ( 0 )
 نشر من قبل Surabhi Sachdev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.



قيم البحث

اقرأ أيضاً

We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
Among the most eagerly anticipated opportunities made possible by Advanced LIGO/Virgo are multimessenger observations of compact mergers. Optical counterparts may be short-lived so rapid characterization of gravitational wave (GW) events is paramount for discovering electromagnetic signatures. One way to meet the demand for rapid GW parameter estimation is to trade off accuracy for speed, using waveform models with simplified treatment of the compact objects spin. We report on the systematic errors in GW parameter estimation suffered when using different spin approximations to recover generic signals. Component mass measurements can be biased by $>5sigma$ using simple-precession waveforms and in excess of $20sigma$ when non-spinning templates are employed. This suggests that electromagnetic observing campaigns should not take a strict approach to selecting which LIGO/Virgo candidates warrant follow-up observations based on low-latency mass estimates. For sky localization, we find searched areas are up to a factor of ${sim}$2 larger for non-spinning analyses, and are systematically larger for any of the simplified waveforms considered in our analysis. Distance biases for the non-precessing waveforms can be in excess of 100% and are largest when the spin angular momenta are in the orbital plane of the binary. We confirm that spin-aligned waveforms should be used for low-latency parameter estimation at the minimum. Including simple precession, though more computationally costly, mitigates biases except for signals with extreme precession effects. Our results shine a spotlight on the critical need for development of computationally inexpensive precessing waveforms and/or massively parallel algorithms for parameter estimation.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
The electromagnetic (EM) emission associated with a gravitational wave (GW) signal is one of the main goal of future astronomy. Merger of neutron stars and/or black holes and core-collapse of massive stars are expected to cause rapid transient electr omagnetic signals. The EM follow-up of GW signals will have to deal with large position uncertainties. The gravitational sky localization is expected to be tens to hundreds of square degrees. Wide-field cameras and rapid follow-up observations will be crucial to characterize the EM candidates for the first EM counterpart identification. We present some of the activities that we are currently carrying on to optimize the response of the INAF network of facilities to expected GW triggers. The INAF network will represent an efficient operational framework capable of fast reaction on large error box triggers and direct identification and characterization of the candidates.
We present the Gravitational Wave Treasure Map, a tool to coordinate, visualize, and assess the electromagnetic follow-up of gravitational wave (GW) events. With typical GW localization regions of hundreds to thousands of square degrees and dozens of active follow-up groups, the pursuit of electromagnetic (EM) counterparts is a challenging endeavor, but the scientific payoff for early discovery of any counterpart is clear. With this tool, we provide a website and API interface that allows users to easily see where other groups have searched and better inform their own follow-up search efforts. A strong community of Treasure Map users will increase the overall efficiency of EM counterpart searches and will play a fundamental role in the future of multi-messenger astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا