ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called hybrid stars. In particular, in GW190814, a new compact object with 2.6 $M_{odot}$ is reported. This could be the lightest black hole, the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid stars which will constrain the possible SIDM models.
We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, w
The simultaneous detection of electromagnetic and gravitational waves from the coalescence of two neutron stars (GW170817 and GRB170817A) has ushered in a new era of multi-messenger astronomy, with electromagnetic detections spanning from gamma to ra
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors
The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-47
Adopting a binned method, we model-independently reconstruct the mass function of primordial black holes (PBHs) from GWTC-2 and find that such a PBH mass function can be explained by a broad red-tilted power spectrum of curvature perturbations. Even