ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian algorithm for retrosynthesis

116   0   0.0 ( 0 )
 نشر من قبل Zhongliang Guo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The identification of synthetic routes that end with a desired product has been an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited fraction of the entire reaction space. At present, emerging machine-learning technologies are overturning the process of retrosynthetic planning. The objective of this study is to discover synthetic routes backwardly from a given desired molecule to commercially available compounds. The problem is reduced to a combinatorial optimization task with the solution space subject to the combinatorial complexity of all possible pairs of purchasable reactants. We address this issue within the framework of Bayesian inference and computation. The workflow consists of two steps: a deep neural network is trained that forwardly predicts a product of the given reactants with a high level of accuracy, following which this forward model is inverted into the backward one via Bayes law of conditional probability. Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search algorithm. The Bayesian retrosynthesis algorithm could successfully rediscover 80.3% and 50.0% of known synthetic routes of single-step and two-step reactions within top-10 accuracy, respectively, thereby outperforming state-of-the-art algorithms in terms of the overall accuracy. Remarkably, the Monte Carlo method, which was specifically designed for the presence of diverse multiple routes, often revealed a ranked list of hundreds of reaction routes to the same synthetic target. We investigated the potential applicability of such diverse candidates based on expert knowledge from synthetic organic chemistry.



قيم البحث

اقرأ أيضاً

Self-reinforcing feedback loops in personalization systems are typically caused by users choosing from a limited set of alternatives presented systematically based on previous choices. We propose a Bayesian choice model built on Luce axioms that expl icitly accounts for users limited exposure to alternatives. Our model is fair---it does not impose negative bias towards unpresented alternatives, and practical---preference estimates are accurately inferred upon observing a small number of interactions. It also allows efficient sampling, leading to a straightforward online presentation mechanism based on Thompson sampling. Our approach achieves low regret in learning to present upon exploration of only a small fraction of possible presentations. The proposed structure can be reused as a building block in interactive systems, e.g., recommender systems, free of feedback loops.
We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after $T= tilde{mathcal{O}}(d/varepsilon_{textsf{acc}})$ iterations, we can sample from $p_T$ such that $text{dist}(p_T, p^*) leq varepsilon_{textsf{acc}} + tilde{mathcal{O}}(epsilon)$, where $epsilon$ is the fraction of corruptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world data sets for mean estimation, regression and binary classification.
Bayesian optimization (BO) methods often rely on the assumption that the objective function is well-behaved, but in practice, this is seldom true for real-world objectives even if noise-free observations can be collected. Common approaches, which try to model the objective as precisely as possible, often fail to make progress by spending too many evaluations modeling irrelevant details. We address this issue by proposing surrogate models that focus on the well-behaved structure in the objective function, which is informative for search, while ignoring detrimental structure that is challenging to model from few observations. First, we demonstrate that surrogate models with appropriate noise distributions can absorb challenging structures in the objective function by treating them as irreducible uncertainty. Secondly, we show that a latent Gaussian process is an excellent surrogate for this purpose, comparing with Gaussian processes with standard noise distributions. We perform numerous experiments on a range of BO benchmarks and find that our approach improves reliability and performance when faced with challenging objective functions.
Dependent nonparametric processes extend distributions over measures, such as the Dirichlet process and the beta process, to give distributions over collections of measures, typically indexed by values in some covariate space. Such models are appropr iate priors when exchangeability assumptions do not hold, and instead we want our model to vary fluidly with some set of covariates. Since the concept of dependent nonparametric processes was formalized by MacEachern [1], there have been a number of models proposed and used in the statistics and machine learning literatures. Many of these models exhibit underlying similarities, an understanding of which, we hope, will help in selecting an appropriate prior, developing new models, and leveraging inference techniques.
166 - Maxime Gasse 2015
We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PCs ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا