ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian Choice Model for Eliminating Feedback Loops

117   0   0.0 ( 0 )
 نشر من قبل G\\\"okhan \\c{C}apan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-reinforcing feedback loops in personalization systems are typically caused by users choosing from a limited set of alternatives presented systematically based on previous choices. We propose a Bayesian choice model built on Luce axioms that explicitly accounts for users limited exposure to alternatives. Our model is fair---it does not impose negative bias towards unpresented alternatives, and practical---preference estimates are accurately inferred upon observing a small number of interactions. It also allows efficient sampling, leading to a straightforward online presentation mechanism based on Thompson sampling. Our approach achieves low regret in learning to present upon exploration of only a small fraction of possible presentations. The proposed structure can be reused as a building block in interactive systems, e.g., recommender systems, free of feedback loops.

قيم البحث

اقرأ أيضاً

In this work, we study sequential choice bandits with feedback. We propose bandit algorithms for a platform that personalizes users experience to maximize its rewards. For each action directed to a given user, the platform is given a positive reward, which is a non-decreasing function of the action, if this action is below the users threshold. Users are equipped with a patience budget, and actions that are above the threshold decrease the users patience. When all patience is lost, the user abandons the platform. The platform attempts to learn the thresholds of the users in order to maximize its rewards, based on two different feedback models describing the information pattern available to the platform at each action. We define a notion of regret by determining the best action to be taken when the platform knows that the users threshold is in a given interval. We then propose bandit algorithms for the two feedback models and show that upper and lower bounds on the regret are of the order of $tilde{O}(N^{2/3})$ and $tildeOmega(N^{2/3})$, respectively, where $N$ is the total number of users. Finally, we show that the waiting time of any user before receiving a personalized experience is uniform in $N$.
Item response theory (IRT) models for categorical response data are widely used in the analysis of educational data, computerized adaptive testing, and psychological surveys. However, most IRT models rely on both the assumption that categories are st rictly ordered and the assumption that this ordering is known a priori. These assumptions are impractical in many real-world scenarios, such as multiple-choice exams where the levels of incorrectness for the distractor categories are often unknown. While a number of results exist on IRT models for unordered categorical data, they tend to have restrictive modeling assumptions that lead to poor data fitting performance in practice. Furthermore, existing unordered categorical models have parameters that are difficult to interpret. In this work, we propose a novel methodology for unordered categorical IRT that we call SPRITE (short for stochastic polytomous response item model) that: (i) analyzes both ordered and unordered categories, (ii) offers interpretable outputs, and (iii) provides improved data fitting compared to existing models. We compare SPRITE to existing item response models and demonstrate its efficacy on both synthetic and real-world educational datasets.
The choice of the summary statistics used in Bayesian inference and in particular in ABC algorithms has bearings on the validation of the resulting inference. Those statistics are nonetheless customarily used in ABC algorithms without consistency che cks. We derive necessary and sufficient conditions on summary statistics for the corresponding Bayes factor to be convergent, namely to asymptotically select the true model. Those conditions, which amount to the expectations of the summary statistics to asymptotically differ under both models, are quite natural and can be exploited in ABC settings to infer whether or not a choice of summary statistics is appropriate, via a Monte Carlo validation.
We propose a hierarchical Bayesian recurrent state space model for modeling switching network connectivity in resting state fMRI data. Our model allows us to uncover shared network patterns across disease conditions. We evaluate our method on the ADN I2 dataset by inferring latent state patterns corresponding to altered neural circuits in individuals with Mild Cognitive Impairment (MCI). In addition to states shared across healthy and individuals with MCI, we discover latent states that are predominantly observed in individuals with MCI. Our model outperforms current state of the art deep learning method on ADNI2 dataset.
Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult t o predict, even when organisers and transportation operators coordinate. The problem highly increases when several events happen concurrently. To solve these problems, costly processes, heavily reliant on manual search and personal experience, are usual practice in large cities like Singapore, London or Tokyo. This paper presents a Bayesian additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total number of public transportation trips to the special event areas, thereby contributing to a more adaptive transportation system. Furthermore, for multiple concurrent event scenarios, the proposed algorithm is able to disaggregate gross trip counts into their most likely components related to specific events and routine behavior. Using real data from Singapore, we show that the presented model outperforms the best baseline model by up to 26% in R2 and also has explanatory power for its individual components.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا