ﻻ يوجد ملخص باللغة العربية
Many-body quantum systems can exhibit a striking degree of symmetry unparalleled by their classical counterparts. While in real materials SU($N$) symmetry is an idealization, this symmetry is pristinely realized in fully controllable ultracold alkaline-earth atomic gases. Here, we study an SU($N$)-symmetric Fermi liquid of $^{87}$Sr atoms, where $N$ can be tuned to be as large as 10. In the deeply degenerate regime, we show through precise measurements of density fluctuations and expansion dynamics that the large $N$ of spin states under SU($N$) symmetry leads to pronounced interaction effects in a system with a nominally negligible interaction parameter. Accounting for these effects we demonstrate thermometry accurate to one-hundredth of the Fermi energy. We also demonstrate record speed for preparing degenerate Fermi seas, reaching $T/T_F = 0.12$ in under 3 s, enabled by the SU($N$) symmetric interactions. This, along with the introduction of a new spin polarizing method, enables operation of a 3D optical lattice clock in the band insulating-regime.
We introduce a spin-orbit coupling scheme, where a retro-reflected laser beam selectively diffracts two spin components in opposite directions. Spin sensitivity is provided by sweeping through a magnetic-field sensitive transition while dark states e
We measure the temperature of a deeply degenerate Fermi gas, by using a weakly interacting sample of heavier bosonic atoms as a probe. This thermometry method relies on the thermalization between the two species and on the determination of the conden
The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic many-body systems. In the one particle per site and strongly interacting limit ${U/t gg 1}$, it is effectively described by the Heisenberg Hamilton
SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from inter-particle interactions. So far, only indirect evidence for this symmetry exists, and the scattering parameters remain largely unknown. H
We report the realization of a novel degenerate Fermi mixture with an SU(2)*SU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium 171Yb with the nuclear spin I=1/2 and 173Yb with I=5/2 below