ﻻ يوجد ملخص باللغة العربية
SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from inter-particle interactions. So far, only indirect evidence for this symmetry exists, and the scattering parameters remain largely unknown. Here we report the first spectroscopic observation of SU(N=10) symmetry in Sr-87 using the state-of-the-art measurement precision offered by an ultra-stable laser. By encoding the electronic orbital degree of freedom in two clock states, while keeping the system open to 10 nuclear spin sublevels, we probe the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps. We study the spin-orbital quantum dynamics and determine all relevant interaction parameters. This work prepares for using alkaline-earth atoms as test-beds for iconic orbital models.
Many-body quantum systems can exhibit a striking degree of symmetry unparalleled by their classical counterparts. While in real materials SU($N$) symmetry is an idealization, this symmetry is pristinely realized in fully controllable ultracold alkali
Significant leaps in the understanding of quantum systems have been driven by the exploration of geometry, topology, dimensionality, and interactions with ultracold atomic ensembles. A system where atoms evolve while confined on an ellipsoidal surfac
We characterize inter- and intraisotope interorbital interactions between atoms in the 1S0 ground state and the 3P0 metastable state in interacting Fermi-Fermi mixtures of 171Yb and 173Yb. We perform high-precision clock spectroscopy to measure inter
The Su-Schrieffer-Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer $trans$-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond
We introduce a spin-orbit coupling scheme, where a retro-reflected laser beam selectively diffracts two spin components in opposite directions. Spin sensitivity is provided by sweeping through a magnetic-field sensitive transition while dark states e