ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of SU(2)*SU(6) Fermi System

164   0   0.0 ( 0 )
 نشر من قبل Shintaro Taie
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the realization of a novel degenerate Fermi mixture with an SU(2)*SU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium 171Yb with the nuclear spin I=1/2 and 173Yb with I=5/2 below the Fermi temperature T_ F as 0.46T_F for 171Yb and 0.54T_F for 173Yb. The same scattering lengths for different spin components make this mixture featured with the novel SU(2)*SU(6) symmetry. The nuclear spin components are separately imaged by exploiting an optical Stern-Gerlach effect. In addition, the mixture is loaded into a 3D optical lattice to implement the SU(2)*SU(6) Hubbard model. This mixture will open the door to the study of novel quantum phases such as a spinor Bardeen-Cooper-Schrieffer-like fermionic superfluid.



قيم البحث

اقرأ أيضاً

We characterize inter- and intraisotope interorbital interactions between atoms in the 1S0 ground state and the 3P0 metastable state in interacting Fermi-Fermi mixtures of 171Yb and 173Yb. We perform high-precision clock spectroscopy to measure inter action-induced energy shifts in a deep 3D optical lattice and determine the corresponding scattering lengths. We find the elastic interaction of the interisotope mixtures 173Yb_e-171Yb_g and 173Yb_g-171Yb_e to be weakly attractive and very similar, while the corresponding two-body loss coefficients differ by more than two orders of magnitude. By comparing different spin mixtures we experimentally demonstrate the SU(2)xSU(6) symmetry of all elastic and inelastic interactions. Furthermore, we measure the spin-exchange interaction in 171Yb and confirm its previously observed antiferromagnetic nature.
Many-body quantum systems can exhibit a striking degree of symmetry unparalleled by their classical counterparts. While in real materials SU($N$) symmetry is an idealization, this symmetry is pristinely realized in fully controllable ultracold alkali ne-earth atomic gases. Here, we study an SU($N$)-symmetric Fermi liquid of $^{87}$Sr atoms, where $N$ can be tuned to be as large as 10. In the deeply degenerate regime, we show through precise measurements of density fluctuations and expansion dynamics that the large $N$ of spin states under SU($N$) symmetry leads to pronounced interaction effects in a system with a nominally negligible interaction parameter. Accounting for these effects we demonstrate thermometry accurate to one-hundredth of the Fermi energy. We also demonstrate record speed for preparing degenerate Fermi seas, reaching $T/T_F = 0.12$ in under 3 s, enabled by the SU($N$) symmetric interactions. This, along with the introduction of a new spin polarizing method, enables operation of a 3D optical lattice clock in the band insulating-regime.
We introduce a spin-orbit coupling scheme, where a retro-reflected laser beam selectively diffracts two spin components in opposite directions. Spin sensitivity is provided by sweeping through a magnetic-field sensitive transition while dark states e nsure that spontaneous emission remains low. The scheme is adiabatic and thus inherently robust. This tailored spin-orbit coupling allows simultaneous measurements of the spin and momentum distributions of a strontium degenerate Fermi gas, and thus opens the path to momentum-resolved spin correlation measurements on SU(N) quantum magnets.
We investigate a species selective cooling process of a trapped $mathrm{SU}(N)$ Fermi gas using entropy redistribution during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we show that when a subset $ N_A < N$ of the single-atom levels experiences a stronger trapping potential in a certain region of space, the dimple, it leads to improvement in cooling as compared to a $mathrm{SU}(N_A)$ Fermi gas only. We show that optimal performance is achieved when all atomic levels experience the same potential outside the dimple and we quantify the cooling for various $N_A$ by evaluating the dependence of the final entropy densities and temperatures as functions of the initial entropy. Furthermore, considering ${}^{87}{rm Sr}$ and ${}^{173}{rm Yb}$ for specificity, we provide a quantitative discussion of how the state selective trapping can be achieved with readily available experimental techniques.
The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic many-body systems. In the one particle per site and strongly interacting limit ${U/t gg 1}$, it is effectively described by the Heisenberg Hamilton ian. In this limit, enlarging the spin and extending the typical SU(2) symmetry to SU($N$) has been predicted to give exotic phases of matter in the ground state, with a complicated dependence on $N$. This raises the question of what --- if any --- are the finite-temperature signatures of these phases, especially in the currently experimentally relevant regime near or above the superexchange energy. We explore this question for thermodynamic observables by numerically calculating the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site, using determinant Quantum Monte Carlo and Numerical Linked Cluster Expansion. Interestingly, we find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$. Although the physics in the regime studied is well beyond what can be captured by low-order high-temperature series, we show that an analytic description of the scaling is possible in terms of only one- and two-site calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا