ﻻ يوجد ملخص باللغة العربية
We propose a joint feature compression and transmission scheme for efficient inference at the wireless network edge. Our goal is to enable efficient and reliable inference at the edge server assuming limited computational resources at the edge device. Previous work focused mainly on feature compression, ignoring the computational cost of channel coding. We incorporate the recently proposed deep joint source-channel coding (DeepJSCC) scheme, and combine it with novel filter pruning strategies aimed at reducing the redundant complexity from neural networks. We evaluate our approach on a classification task, and show improved results in both end-to-end reliability and workload reduction at the edge device. This is the first work that combines DeepJSCC with network pruning, and applies it to image classification over the wireless edge.
In this paper, a novel approach for optimizing the joint deployment of small cell base stations and wireless backhaul links is proposed. This joint deployment scenario is cast as a multi-objective optimization problem under the constraints of limited
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In
We study wireless collaborative machine learning (ML), where mobile edge devices, each with its own dataset, carry out distributed stochastic gradient descent (DSGD) over-the-air with the help of a wireless access point acting as the parameter server
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are c
Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity