ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Device-Edge Inference over Wireless Links with Pruning

310   0   0.0 ( 0 )
 نشر من قبل Mikolaj Jankowski
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a joint feature compression and transmission scheme for efficient inference at the wireless network edge. Our goal is to enable efficient and reliable inference at the edge server assuming limited computational resources at the edge device. Previous work focused mainly on feature compression, ignoring the computational cost of channel coding. We incorporate the recently proposed deep joint source-channel coding (DeepJSCC) scheme, and combine it with novel filter pruning strategies aimed at reducing the redundant complexity from neural networks. We evaluate our approach on a classification task, and show improved results in both end-to-end reliability and workload reduction at the edge device. This is the first work that combines DeepJSCC with network pruning, and applies it to image classification over the wireless edge.



قيم البحث

اقرأ أيضاً

In this paper, a novel approach for optimizing the joint deployment of small cell base stations and wireless backhaul links is proposed. This joint deployment scenario is cast as a multi-objective optimization problem under the constraints of limited backhaul capacity and outage probability. To address the problem,a novel adaptive algorithm that integrates $epsilon$-method, Lagrangian relaxation and tabu search is proposed to obtain the Pareto optimal solution set. Simulation results show that the proposed algorithm is quite effective in finding the optimal solutions. The proposed joint deployment model can be used for planning small cell networks.
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which in each step selects the device consuming the least updating time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.
We study wireless collaborative machine learning (ML), where mobile edge devices, each with its own dataset, carry out distributed stochastic gradient descent (DSGD) over-the-air with the help of a wireless access point acting as the parameter server (PS). At each iteration of the DSGD algorithm wireless devices compute gradient estimates with their local datasets, and send them to the PS over a wireless fading multiple access channel (MAC). Motivated by the additive nature of the wireless MAC, we propose an analog DSGD scheme, in which the devices transmit scal
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are c hallenging in practice. As such, how to design the maximum likelihood (ML) estimator in the presence of residual channel-gain mismatch and asynchronies is an open problem. To fill this gap, this paper formulates the problem of misaligned OAC for federated edge learning and puts forth a whitened matched filtering and sampling scheme to obtain oversampled, but independent, samples from the misaligned and overlapped signals. Given the whitened samples, a sum-product ML estimator and an aligned-sample estimator are devised to estimate the arithmetic sum of the transmitted symbols. In particular, the computational complexity of our sum-product ML estimator is linear in the packet length and hence is significantly lower than the conventional ML estimator. Extensive simulations on the test accuracy versus the average received energy per symbol to noise power spectral density ratio (EsN0) yield two main results: 1) In the low EsN0 regime, the aligned-sample estimator can achieve superior test accuracy provided that the phase misalignment is non-severe. In contrast, the ML estimator does not work well due to the error propagation and noise enhancement in the estimation process. 2) In the high EsN0 regime, the ML estimator attains the optimal learning performance regardless of the severity of phase misalignment. On the other hand, the aligned-sample estimator suffers from a test-accuracy loss caused by phase misalignment.
Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity of deployed devices. A popular alternative comprises offloading CNN processing to powerful cloud-based servers. Nevertheless, by relying on the cloud to produce outputs, emerging mission-critical and high-mobility applications, such as drone obstacle avoidance or interactive applications, can suffer from the dynamic connectivity conditions and the uncertain availability of the cloud. In this paper, we propose SPINN, a distributed inference system that employs synergistic device-cloud computation together with a progressive inference method to deliver fast and robust CNN inference across diverse settings. The proposed system introduces a novel scheduler that co-optimises the early-exit policy and the CNN splitting at run time, in order to adapt to dynamic conditions and meet user-defined service-level requirements. Quantitative evaluation illustrates that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x and improves accuracy by 20.7% under latency constraints, while providing robust operation under uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا