ﻻ يوجد ملخص باللغة العربية
In this paper, a novel approach for optimizing the joint deployment of small cell base stations and wireless backhaul links is proposed. This joint deployment scenario is cast as a multi-objective optimization problem under the constraints of limited backhaul capacity and outage probability. To address the problem,a novel adaptive algorithm that integrates $epsilon$-method, Lagrangian relaxation and tabu search is proposed to obtain the Pareto optimal solution set. Simulation results show that the proposed algorithm is quite effective in finding the optimal solutions. The proposed joint deployment model can be used for planning small cell networks.
Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are current
Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing can root back to the network information theory. For generations of wireless communication systems design, orthogonal multiple access (OMA) schemes in time, frequency
We study a wireless ad-hoc sensor network (WASN) where $N$ sensors gather data from the surrounding environment and transmit their sensed information to $M$ fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is f
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs
A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be invoked as an explicit benefit of having a