ﻻ يوجد ملخص باللغة العربية
We study wireless collaborative machine learning (ML), where mobile edge devices, each with its own dataset, carry out distributed stochastic gradient descent (DSGD) over-the-air with the help of a wireless access point acting as the parameter server (PS). At each iteration of the DSGD algorithm wireless devices compute gradient estimates with their local datasets, and send them to the PS over a wireless fading multiple access channel (MAC). Motivated by the additive nature of the wireless MAC, we propose an analog DSGD scheme, in which the devices transmit scal
We study collaborative machine learning systems where a massive dataset is distributed across independent workers which compute their local gradient estimates based on their own datasets. Workers send their estimates through a multipath fading multip
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are c
We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices pe
We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at diff
We propose a joint feature compression and transmission scheme for efficient inference at the wireless network edge. Our goal is to enable efficient and reliable inference at the edge server assuming limited computational resources at the edge device