ترغب بنشر مسار تعليمي؟ اضغط هنا

A phase transition for preferential attachment models with additive fitness

143   0   0.0 ( 0 )
 نشر من قبل Bas Lodewijks
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Preferential attachment models form a popular class of growing networks, where incoming vertices are preferably connected to vertices with high degree. We consider a variant of this process, where vertices are equipped with a random initial fitness representing initial inhomogeneities among vertices and the fitness influences the attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness distribution and show that the model exhibits a phase transition depending on the tail exponent of the fitness distribution. In the weak disorder regime, one of the old vertices has maximal degree irrespective of fitness, while for strong disorder the vertex with maximal degree has to satisfy the right balance between fitness and age. Our methods use martingale methods to show concentration of degree evolutions as well as extreme value theory to control the fitness landscape.



قيم البحث

اقرأ أيضاً

We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate pha se transitions in graph structure as the relative weighting of these two components of the attachment rule is varied. Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence of the resulting graph coincides with that of the standard Barabasi--Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence coincides with that of a purely geometric model, the on-line nearest-neighbour graph, which is of interest in its own right and for which we prove some extensions of known results. We also show the presence of an intermediate regime, in which the behaviour differs significantly from both the on-line nearest-neighbour graph and the Barabasi--Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence. Our results lend some mathematical support to simulation studies of Manna and Sen, while proving that the power law to stretched exponential phase transition occurs at a different point from the one conjectured by those authors.
We introduce a model of a preferential attachment based random graph which extends the family of models in which condensation phenomena can occur. Each vertex has an associated uniform random variable which we call its location. Our model evolves in discrete time by selecting $r$ vertices from the graph with replacement, with probabilities proportional to their degrees plus a constant $alpha$. A new vertex joins the network and attaches to one of these vertices according to a given probability associated to the ranking of their locations. We give conditions for the occurrence of condensation, showing the existence of phase transitions in $alpha$ below which condensation occurs. The condensation in our model differs from that in preferential attachment models with fitness in that the condensation can occur at a random location, that it can be due to a persistent hub, and that there can be more than one point of condensation.
We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا