ترغب بنشر مسار تعليمي؟ اضغط هنا

Condensation in preferential attachment models with location-based choice

149   0   0.0 ( 0 )
 نشر من قبل John Haslegrave
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a model of a preferential attachment based random graph which extends the family of models in which condensation phenomena can occur. Each vertex has an associated uniform random variable which we call its location. Our model evolves in discrete time by selecting $r$ vertices from the graph with replacement, with probabilities proportional to their degrees plus a constant $alpha$. A new vertex joins the network and attaches to one of these vertices according to a given probability associated to the ranking of their locations. We give conditions for the occurrence of condensation, showing the existence of phase transitions in $alpha$ below which condensation occurs. The condensation in our model differs from that in preferential attachment models with fitness in that the condensation can occur at a random location, that it can be due to a persistent hub, and that there can be more than one point of condensation.



قيم البحث

اقرأ أيضاً

We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
We introduce a new model of preferential attachment with fitness, and establish a time reversed duality between the model and a system of branching-coalescing particles. Using this duality, we give a clear and concise explanation for the condensation phenomenon, in which unusually fit vertices may obtain abnormally high degree: it arises from a growth-extinction dichotomy within the branching part of the dual. We show further that the condensation is extensive. As the graph grows, unusually fit vertices become, each only for a limited time, neighbouring to a non-vanishing proportion of the current graph.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
We consider an evolving preferential attachment random graph model where at discrete times a new node is attached to an old node, selected with probability proportional to a superlinear function of its degree. For such schemes, it is known that the g raph evolution condenses, that is a.s. in the limit graph there will be a single random node with infinite degree, while all others have finite degree. In this note, we establish a.s. law of large numbers type limits and fluctuation results, as $nuparrowinfty$, for the counts of the number of nodes with degree $kgeq 1$ at time $ngeq 1$. These limits rigorously verify and extend a physical picture of Krapivisky, Redner and Leyvraz (2000) on how the condensation arises with respect to the degree distribution.
Preferential attachment models form a popular class of growing networks, where incoming vertices are preferably connected to vertices with high degree. We consider a variant of this process, where vertices are equipped with a random initial fitness r epresenting initial inhomogeneities among vertices and the fitness influences the attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness distribution and show that the model exhibits a phase transition depending on the tail exponent of the fitness distribution. In the weak disorder regime, one of the old vertices has maximal degree irrespective of fitness, while for strong disorder the vertex with maximal degree has to satisfy the right balance between fitness and age. Our methods use martingale methods to show concentration of degree evolutions as well as extreme value theory to control the fitness landscape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا