ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions for random geometric preferential attachment graphs

220   0   0.0 ( 0 )
 نشر من قبل Andrew R. Wade
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate phase transitions in graph structure as the relative weighting of these two components of the attachment rule is varied. Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence of the resulting graph coincides with that of the standard Barabasi--Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence coincides with that of a purely geometric model, the on-line nearest-neighbour graph, which is of interest in its own right and for which we prove some extensions of known results. We also show the presence of an intermediate regime, in which the behaviour differs significantly from both the on-line nearest-neighbour graph and the Barabasi--Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence. Our results lend some mathematical support to simulation studies of Manna and Sen, while proving that the power law to stretched exponential phase transition occurs at a different point from the one conjectured by those authors.



قيم البحث

اقرأ أيضاً

We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More sp ecifically, we prove that when the edge-step function $f$ is a emph{monotone regularly varying function} at infinity, the sequence of graphs associated to it obeys a power-law degree distribution whose exponent is related to the index of regular variation of $f$ at infinity whenever said index is greater than $-1$. When the regularly variation index is less than or equal to $-1$, we show that the proportion of vertices with degree smaller than any given constant goes to $0$ a. s..
We consider the random walk attachment graph introduced by Saram{a}ki and Kaski and proposed as a mechanism to explain how behaviour similar to preferential attachment may appear requiring only local knowledge. We show that if the length of the rando m walk is fixed then the resulting graphs can have properties significantly different from those of preferential attachment graphs, and in particular that in the case where the random walks are of length 1 and each new vertex attaches to a single existing vertex the proportion of vertices which have degree 1 tends to 1, in contrast to preferential attachment models. AMS 2010 Subject Classification: Primary 05C82. Key words and phrases:random graphs; preferential attachment; random walk.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
We give an explicit construction of the weak local limit of a class of preferential attachment graphs. This limit contains all local information and allows several computations that are otherwise hard, for example, joint degree distributions and, mor e generally, the limiting distribution of subgraphs in balls of any given radius $k$ around a random vertex in the preferential attachment graph. We also establish the finite-volume corrections which give the approach to the limit.
Preferential attachment models form a popular class of growing networks, where incoming vertices are preferably connected to vertices with high degree. We consider a variant of this process, where vertices are equipped with a random initial fitness r epresenting initial inhomogeneities among vertices and the fitness influences the attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness distribution and show that the model exhibits a phase transition depending on the tail exponent of the fitness distribution. In the weak disorder regime, one of the old vertices has maximal degree irrespective of fitness, while for strong disorder the vertex with maximal degree has to satisfy the right balance between fitness and age. Our methods use martingale methods to show concentration of degree evolutions as well as extreme value theory to control the fitness landscape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا