ﻻ يوجد ملخص باللغة العربية
We present a closed form solution to the eigenvalue problem of a class of master equations that describe open quantum system with loss and dephasing but without gain. The method relies on the existence of a conserved number of excitation in the Hamiltonian part and that none of the Lindblad operators describe an excitation of the system. In the absence of dephasing Lindblad operators, the eigensystem of the Liouville operator can be constructed from the eigenvalues and eigenvectors of the effective non-Hermitian Hamiltonian used in the quantum jump approach. Op
We derive the quantum master equations for heavy quark systems in a high-temperature quark- gluon plasma in the Lindblad form. The master equations are derived in the influence functional formalism for open quantum systems in perturbation theory. The
We consider an open quantum system described by a Lindblad-type master equation with two times-scales. The fast time-scale is strongly dissipative and drives the system towards a low-dimensional decoherence-free space. To perform the adiabatic elimin
Realistic models of quantum systems must include dissipative interactions with an environment. For weakly-damped systems the Lindblad-form Markovian master equation is invaluable for this task due to its tractability and efficiency. This equation onl
In this paper we consider an alternative formulation of a class of stochastic wave and master equations with scalar noise that are used in quantum optics for modelling open systems and continuously monitored systems. The reformulation is obtained by
We present a general quantum fluctuation theorem for the entropy production of an open quantum system whose evolution is described by a Lindblad master equation. Such theorem holds for both local and global master equations, thus settling the dispute