ﻻ يوجد ملخص باللغة العربية
In this article we study the limit when $alpha to 0$ of solutions to the $alpha$-Euler system in the half-plane, with no-slip boundary conditions, to weak solutions of the 2D incompressible Euler equations with non-negative initial vorticity in the space of bounded Radon measures in $H^{-1}$. This result extends the analysis done in arXiv:1611.05300 and arXiv:1403.5682. It requires a substantially distinct approach, analogous to that used for Delorts Theorem, and a new detailed investigation of the relation between (no-slip) filtered velocity and potential vorticity in the half-plane.
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
An initial boundary value problem for compressible Magnetohydrodynamics (MHD) is considered on an exterior domain (with the first Betti number vanishes) in $R^3$ in this paper. The global existence of smooth solutions near a given constant state for
In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of th
We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavi