ترغب بنشر مسار تعليمي؟ اضغط هنا

The isothermal limit for the compressible Euler equations with damping

90   0   0.0 ( 0 )
 نشر من قبل Quentin Chauleur
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Quentin Chauleur




اسأل ChatGPT حول البحث

We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavior of Gaussian initial data. We then show the weak L 1 convergence of the density as well as the asymptotic behavior of its first and second moments. Contents 1. Introduction 1 2. Assumptions and main results 3 3. The limit $gamma$ $rightarrow$ 1 of Barenblatts solutions 6 4. Gaussian solutions 9 5. Evolution of certain quantities 10 6. Convergence 15 7. Conclusion 17 References 17

قيم البحث

اقرأ أيضاً

We prove the existence of relative finite-energy vanishing viscosity solutions of the one-dimensional, isentropic Euler equations under the assumption of an asymptotically isothermal pressure law, that is, $p(rho)/rho = O(1)$ in the limit $rho to inf ty$. This solution is obtained as the vanishing viscosity limit of classical solutions of the one-dimensional, isentropic, compressible Navier--Stokes equations. Our approach relies on the method of compensated compactness to pass to the limit rigorously in the nonlinear terms. Key to our strategy is the derivation of hyperbolic representation formulas for the entropy kernel and related quantities; among others, a special entropy pair used to obtain higher uniform integrability estimates on the approximate solutions. Intricate bounding procedures relying on these representation formulas then yield the required compactness of the entropy dissipation measures. In turn, we prove that the Young measure generated by the classical solutions of the Navier--Stokes equations reduces to a Dirac mass, from which we deduce the required convergence to a solution of the Euler equations.
206 - Fei Hou 2015
In this paper, we are concerned with the global existence and blowup of smooth solutions of the 3-D compressible Euler equation with time-depending damping $$ partial_trho+operatorname{div}(rho u)=0, quad partial_t(rho u)+operatorname{div}left(rh o uotimes u+p,I_{3}right)=-,frac{mu}{(1+t)^{lambda}},rho u, quad rho(0,x)=bar rho+varepsilonrho_0(x),quad u(0,x)=varepsilon u_0(x), $$ where $xinmathbb R^3$, $mu>0$, $lambdageq 0$, and $barrho>0$ are constants, $rho_0,, u_0in C_0^{infty}(mathbb R^3)$, $(rho_0, u_0) otequiv 0$, $rho(0,cdot)>0$, and $varepsilon>0$ is sufficiently small. For $0leqlambdaleq1$, we show that there exists a global smooth solution $(rho, u)$ when $operatorname{curl} u_0equiv 0$, while for $lambda>1$, in general, the solution $(rho, u)$ will blow up in finite time. Therefore, $lambda=1$ appears to be the critical value for the global existence of small amplitude smooth solutions.
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a suitable test function, the spatial regularity for the density is only required to be of order $2/3$ in the incompressible case, and of order $1/3$ in the compressible case. When the density is constant, we recover the existing results for classical incompressible Euler equation.
In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the a rtificial viscosity approximations up to the origin, removing previous restrictions on the admissible test functions and ruling out formation of an artificial boundary layer at the origin. The uniform estimates may be of independent interest as concerns the possible rate of blow-up of the density and velocity at the origin for spherically symmetric flows.
216 - Anxo Biasi 2021
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence of smooth solutions that vanish at infinity and do not have vacuum regions was recently proved and, in this paper, we provide the first construction of such smooth profiles, the first characterization of their spectrum of radial perturbations as well as some endpoints of unstable directions. Numerical simulations of the Euler equations provide evidence that one of these endpoints is a shock formation that happens before the singularity at the origin, showing that the implosion process is unstable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا