ترغب بنشر مسار تعليمي؟ اضغط هنا

Inviscid Limit of Compressible Viscoelastic Equations with the No-Slip Boundary Condition

125   0   0.0 ( 0 )
 نشر من قبل Dehua Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density is near a positive constant, we establish the uniform estimates of solutions to the compressible viscoelastic flows in the conormal Sobolev spaces. It is well-known that for the corresponding inviscid limit of the compressible Navier-Stokes equations with the no-slip boundary condition, one does not expect the uniform energy estimates of solutions due to the appearance of strong boundary layers. However, when the deformation tensor effect is taken into account, our results show that the deformation tensor plays an important role in the vanishing viscosity process and can prevent the formation of strong boundary layers. As a result we are able to justify the inviscid limit of solutions for the compressible viscous flows under the no-slip boundary condition governed by the viscoelastic equations, based on the uniform conormal regularity estimates achieved in this paper.

قيم البحث

اقرأ أيضاً

In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first ma thematical analysis of a compressible fluid-rigid body system where Navier-slip boundary conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.
We prove the existence of relative finite-energy vanishing viscosity solutions of the one-dimensional, isentropic Euler equations under the assumption of an asymptotically isothermal pressure law, that is, $p(rho)/rho = O(1)$ in the limit $rho to inf ty$. This solution is obtained as the vanishing viscosity limit of classical solutions of the one-dimensional, isentropic, compressible Navier--Stokes equations. Our approach relies on the method of compensated compactness to pass to the limit rigorously in the nonlinear terms. Key to our strategy is the derivation of hyperbolic representation formulas for the entropy kernel and related quantities; among others, a special entropy pair used to obtain higher uniform integrability estimates on the approximate solutions. Intricate bounding procedures relying on these representation formulas then yield the required compactness of the entropy dissipation measures. In turn, we prove that the Young measure generated by the classical solutions of the Navier--Stokes equations reduces to a Dirac mass, from which we deduce the required convergence to a solution of the Euler equations.
112 - Pengfei Chen , Shijin Ding 2019
In this paper, we investigate the convergence rates of inviscid limits for the free-boundary problems of the incompressible magnetohydrodynamics (MHD) with or without surface tension in $mathbb{R}^3$, where the magnetic field is identically constant on the surface and outside of the domain. First, we establish the vorticity, the normal derivatives and the regularity structure of the solutions, and develop a priori co-norm estimates including time derivatives by the vorticity system. Second, we obtain two independent sufficient conditions for the existence of strong vorticity layers: (I) the limit of the difference between the initial MHD vorticity of velocity or magnetic field and that of the ideal MHD equations is nonzero. (II) The cross product of tangential projection on the free surface of the ideal MHD strain tensor of velocity or magnetic field with the normal vector of the free surface is nonzero. Otherwise, the vorticity layer is weak. Third, we prove high order convergence rates of tangential derivatives and the first order normal derivative in standard Sobolev space, where the convergence rates depend on the ideal MHD boundary value.
In this paper, we prove the compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space by employing the Hilbert expansion which includes interior and Knudsen layers. This rigorously justifies the corresp onding formal analysis in Sones book cite{Sone-2007-Book} in the context of short time smooth solutions. In particular, different with previous works in this direction, no Prandtl layers are needed.
In this article we study the limit when $alpha to 0$ of solutions to the $alpha$-Euler system in the half-plane, with no-slip boundary conditions, to weak solutions of the 2D incompressible Euler equations with non-negative initial vorticity in the s pace of bounded Radon measures in $H^{-1}$. This result extends the analysis done in arXiv:1611.05300 and arXiv:1403.5682. It requires a substantially distinct approach, analogous to that used for Delorts Theorem, and a new detailed investigation of the relation between (no-slip) filtered velocity and potential vorticity in the half-plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا