ﻻ يوجد ملخص باللغة العربية
In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of the degeneracy of the initial density, we investigate the estimates of the horizontal spatial and time derivatives and then obtain the estimates of the normal or full derivatives through the elliptic-type estimates. We derive a mixed space-time interpolation inequality which play a vital role in our energy estimates and obtain some extra estimates for the space-time derivatives of the velocity in $L^3$.
We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.
This article is concerned with the local well-posedness problem for the compressible Euler equations in gas dynamics. For this system we consider the free boundary problem which corresponds to a physical vacuum. Despite the clear physical interest in
Global existence for the nonisentropic compressible Euler equations with vacuum boundary for all adiabatic constants $gamma > 1$ is shown through perturbations around a rich class of background nonisentropic affine motions. The notable feature of the
We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. The local well-posedness was r
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness i