ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities

243   0   0.0 ( 0 )
 نشر من قبل Chengchun Hao Dr.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Chengchun Hao




اسأل ChatGPT حول البحث

In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of the degeneracy of the initial density, we investigate the estimates of the horizontal spatial and time derivatives and then obtain the estimates of the normal or full derivatives through the elliptic-type estimates. We derive a mixed space-time interpolation inequality which play a vital role in our energy estimates and obtain some extra estimates for the space-time derivatives of the velocity in $L^3$.



قيم البحث

اقرأ أيضاً

We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.
This article is concerned with the local well-posedness problem for the compressible Euler equations in gas dynamics. For this system we consider the free boundary problem which corresponds to a physical vacuum. Despite the clear physical interest in this system, the prior work on this problemis limited to Lagrangian coordinates, in high regularity spaces. Instead, the objective of the present work is to provide a new, fully Eulerian approach to this problem, which provides a complete, Hadamard style well-posedness theory for this problem in low regularity Sobolev spaces. In particular we give new proofs for both existence, uniqueness, and continuous dependence on the data with sharp, scale invariant energy estimates, and continuation criterion.
Global existence for the nonisentropic compressible Euler equations with vacuum boundary for all adiabatic constants $gamma > 1$ is shown through perturbations around a rich class of background nonisentropic affine motions. The notable feature of the nonisentropic motion lies in the presence of non-constant entropies, and it brings a new mathematical challenge to the stability analysis of nonisentropic affine motions. In particular, the estimation of the curl terms requires a careful use of algebraic, nonlinear structure of the pressure. With suitable regularity of the underlying affine entropy, we are able to adapt the weighted energy method developed for the isentropic Euler by Hadv{z}ic and Jang to the nonisentropic problem. For large $gamma$ values, inspired by Shkoller and Sideris, we use time-dependent weights that allow some of the top-order norms to potentially grow as the time variable tends to infinity. We also exploit coercivity estimates here via the fundamental theorem of calculus in time variable for norms which are not top-order.
We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. The local well-posedness was r ecently proved by Trakhinin and Wang [66] by using Nash-Moser iteration. In this paper, we prove the a priori estimates without loss of regularity for the free-boundary compressible MHD system in Lagrangian coordinates in anisotropic Sobolev space, with more regularity tangential to the boundary than in the normal direction. It is based on modified Alinhac good unknowns, which take into account the covariance under the change of coordinates to avoid the derivative loss; full utilization of the cancellation structures of MHD system, to turn normal derivatives into tangential ones; and delicate analysis in anisotropic Sobolev spaces. Our method is also completely applicable to compressible Euler equations and thus yields an alternative estimate for compressible Euler equations without the analysis of div-curl decomposition or the wave equation in Lindblad-Luo [42], that do not work for compressible MHD. To the best of our knowledge, we establish the first result on the energy estimates without loss of regularity for the free-boundary problem of compressible ideal MHD.
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness i n the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in $L^1_t Lip$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state $p(varrho)= varrho^gamma$, $gamma > 1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا